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HUHTEI'PAIIMA METOAOB MAHIMHHOI'O OBYUYEHUSA
N CTATUCTHYECKOI'O AHAJIM3A JJIS1 ITPOI'HO3UPOBAHUSA CPOKA CJI1YKBbI
N OINTUMM3BALIUNUN HAAEKHOCTHU JIEKTPUYECKOI'O OBOPYJIOBAHUA
INTEGRATING MACHINE LEARNING
AND STATISTICAL ANALYSIS FOR LIFESPAN FORECASTING
AND RELIABILITY OPTIMIZATION OF ELECTRICAL EQUIPMENT

AHHOTanusi: JlonroBpeMeHHas HAJEKHOCTb AJIEKTPUUYECKOrO 00O0pyAOBaHMUS HMMEET
KIIIOYEBOE 3HAYCHHUE IS POMBIIUICHHBIX ¥ KOMMYHJIBHBIX MPUJIOKEHUH, TJIe BHE3AITHbIE OTKa3bl
MOTYT IPUBECTH K 3HAUYUTENIBbHBIM (DUHAHCOBBIM MOTEPSIM M yrpo3am Oe3omacHocTd. B nanHOM
WCCIICZIOBAaHNHM WHTETPUPOBAHBI METO/BI CTATHCTUYECKOTO aHAINW3a U MAUIMHHOTO OOy4YeHHsS IS
IIPOrHO3UPOBAHMS CPOKA CIIy>KObI 00OPYAOBaHMS Ha OCHOBE JAHHBIX 00 3KCIUTyaTalllH, YCIOBHSIX
OKpYy’Kalolmie cpenpl M TEHICHLUSAX OTKa30B. bBbUIM HWCHONB30BaHBI MOJENH, TaKHE Kak
nckyccrBennsie Helponneie cetu (MHC), cnydaifHple Jieca ¥ METOABI aHAIW3a BBIKUBAEMOCTH,
npuueM MHC nokazanu Hausbiciuryro TouHocTh (RMSE=1,8). Pe3ynbrarel noaTBepauIn MOJENb
"BaHHOW KpuBOW" JIsI aHalIM3a TEHAEHUMM OTKA30B M MPOJEMOHCTPUPOBAIM BaKHOCTh
NpopUIAKTUYECKOTO OOCITYy)KMBaHUS B CHMKEHMH PHCKOB Ha 3Tame W3HOCA. YCTAHOBIJIEHO, YTO
(hakTOpBI OKPYKAIOIIEH Cpeibl, 0COOCHHO TEMITEpaTypa, CYIIECTBEHHO BIIUSIOT HA CPOK CITYKOBI, YTO
MOTYEPKUBACT HEOOXOAUMOCTh pa3pabOTKU CTpATETHH, YUUTHIBAIOIIMX YCJIOBHS SKCIUTyaTallHH.
[IpemnoskeHHas: METOMOJIOTHSI TIOJJICPKUBACT TNPHUHATHE pPEHICHHH B 001acTH OOCITy>KWBaHWUS,
MOBBIINIAs HAJIEXKHOCTh U 3KOHOMUYECKYIO A(PPEKTUBHOCTD IKCILUTYaTALUHU SJIEKTPUUIECKUX CUCTEM.

Abstract: The long-term reliability of electrical equipment is crucial in industrial and utility
applications, where unexpected failures can result in significant financial losses and safety risks. This
study integrates statistical analysis and machine learning to forecast equipment lifespan, leveraging
data on operational history, environmental conditions, and failure trends. Models such as artificial
neural networks, random forests, and survival analysis were employed, with the ANN achieving the
highest accuracy (RMSE=1,8). The results validated the "bathtub curve" for failure trends and
demonstrated the critical role of preventive maintenance in mitigating wear-out phase risks.
Environmental factors, notably temperature, significantly impacted lifespan, emphasizing condition-
specific strategies. This framework supports data-driven maintenance planning, enhancing reliability
and cost-efficiency in electrical systems.
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cpezpbl, NPEeJUKTHBHOE OOCITYy)XKMBAaHUE, aHAU3 BBDKMBAEMOCTH, ONepalnuoHHas 3((eKTHBHOCTS,
CTpaTEeruy C yYETOM YCIOBUH IKCIUTyaTalllu.
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Introduction. The long-term reliability and efficient operation of electrical equipment are
critical for various industrial and utility applications. In sectors like power generation, distribution,
and manufacturing, any unexpected downtime due to equipment failure can lead to substantial
financial losses and safety risks (Fig. 1) [1, 2].
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Fig. 1. Equipment Failure Rate Over Time (Bathtub Curve)

This has led to a growing need to forecast the operational lifespan and reliability of electrical
systems, allowing stakeholders to make informed maintenance and replacement decisions (Fig. 2)
[3, 4].
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Fig. 2. Reliability Trend Analysis with and Without Preventive Maintenance

Forecasting the lifespan of electrical equipment involves analyzing operational data, historical
failure rates, environmental conditions, and maintenance history. This information helps identify
patterns of wear, predict potential points of failure, and develop preventive maintenance schedules
that can extend equipment life (Fig. 3).

80
70
60

50

Lifespan Impact (%)

10

0

Temperature Humidity Load Variations Vibration

Fig. 3. Impact of Environmental Factors on Equipment Lifespan

@ MexnyHapoaHbIi Hay4dHbIH XypHaT "BekTop Hayunoi mpican' Nell(16) Hosiops 2024
g www.vektornm.ru | 8 (812) 90529 09 | info@vektornm.ru



Paznen XypHaJa: I/IH)KCHCpHOC ACJ0, TCXHOJIOTUU U TEXHUYCCKUEC HAYKU
Hal[paBJleHMe HUCCICAOBAHUA: TexHuueckue HayKn

Advanced methods, such as machine learning and statistical modeling, have further enhanced
the accuracy of these forecasts, enabling companies to reduce operational costs and optimize
equipment usage [5, 6].

Methods. In this study, we utilized a combination of statistical analysis and machine learning
techniques to forecast the long-term operation of electrical equipment, enabling us to predict failure
points and optimize preventive maintenance schedules. Data was collected from operational records
of various industrial facilities, encompassing information such as equipment age, maintenance
history, operating conditions, and environmental factors (e.g., temperature, humidity). After data
collection, preprocessing steps were conducted to handle missing values, normalize variable scales,
and remove outliers, ensuring data quality and consistency. Statistical analysis provided an
understanding of general failure trends, often represented by the “bathtub curve,” which delineates
early-life failures, steady operation, and wear-out phases.

To enhance predictive accuracy, we implemented machine learning models, including random
forest regression, support vector machines (SVM), artificial neural networks (ANN), and survival
analysis techniques (e.g., Cox proportional hazards model). These models were tailored for different
forecasting tasks, with random forests and SVM used for reliability classification, ANNSs for capturing
complex patterns in multivariate data, and survival analysis for predicting time-to-failure. Model
performance was rigorously evaluated using metrics such as mean absolute error (MAE), root mean
square error (RMSE), and AUC-ROC, ensuring generalizability across equipment types and
operating conditions.

In addition to model-based predictions, we analyzed environmental impacts on equipment
performance through multivariate regression, quantifying how factors like temperature and humidity
affect lifespan. By integrating these insights, we developed an optimal preventive maintenance
schedule that balances reliability with cost-efficiency, addressing the increased failure risks over time.
This methodology provides a comprehensive framework for forecasting equipment lifespan,
supporting industry stakeholders in making data-driven decisions that enhance operational efficiency
and extend the longevity of electrical systems.

Discussion. In this study, our results demonstrate that forecasting models based on machine
learning and statistical methods significantly improve the accuracy of predicting equipment lifespan,
thus allowing for optimal maintenance planning. We present our findings in terms of model accuracy,
failure rate trends, and the impact of preventive maintenance on equipment reliability. These
outcomes are illustrated through equations and graphs that depict key trends and validation metrics
[7, 8].

Our models were evaluated on their accuracy in predicting equipment lifespan, with
performance measured using metrics such as mean absolute error (MAE) and root mean square error
(RMSE), calculated as follows:

MAE=1nZi=1n|yi—yi|

n
1
RMSE = |~ (3 = 9)?
i=1

where y; represents the observed lifespan, y; the predicted lifespan, and nnn the total number
of observations. The random forest model showed an RMSE of 2.3 years, while the artificial neural
network achieved an RMSE of 1.8 years, making it the most accurate for lifespan forecasting. The
accuracy graph below compares the MAE and RMSE values across different models, highlighting
the superior predictive performance of ANN [9, 10].

The analysis of failure rate trends aligned with the “bathtub curve” model, which we observed
in the data as a function of time, t. The failure rate f (t) can be expressed as:

f(t) =2e % + 2, + Azeft

@ MexnyHapoaHbIi Hay4dHbIH XypHaT "BekTop Hayunoi mpican' Nell(16) Hosiops 2024
g www.vektornm.ru | 8 (812) 90529 09 | info@vektornm.ru



Paznen XypHaJa: I/IH)KCHCpHOC ACJ0, TCXHOJIOTUU U TEXHUYCCKUEC HAYKU
Hal[paBJleHMe HUCCICAOBAHUA: TexHuueckue HayKn

where 4;, A,, and A3 are coefficients corresponding to early failure, constant rate, and wear-
out phases, and a and [3 control the decay and growth rates. This curve is depicted in the failure rate
trend graph, illustrating three distinct phases: initial failures, a stable operational period, and a steep
increase in failure rate as equipment ages. Preventive maintenance reduced the steep rise in the wear-
out phase, confirming its effectiveness in prolonging equipment life [11, 12].

The impact of environmental factors on lifespan was assessed using a multivariate regression
model that includes variables for temperature 7, humidity H, and load variations L. The lifespan
Lifespan can be expressed as:

Lifespan = yo + 1T + y,H + y3L + €

where Yy, is the intercept, y;, Y2, and y; are the coefficients for each environmental factor, and
€ represents random error. The results showed that temperature had the most substantial impact, with
every 5°C increase reducing equipment lifespan by approximately 8%. The environmental impact
graph demonstrates the correlation between temperature, humidity, and lifespan reduction, supporting
the need for environment-specific maintenance strategies.

Conclusion.

This study demonstrates the effectiveness of integrating machine learning and statistical
methods for predicting the long-term operation of electrical equipment. By analyzing historical data,
failure rates, and environmental conditions, we developed a robust forecasting model that supports
preventive maintenance planning, with the artificial neural network model achieving the highest
accuracy in lifespan prediction, showing an RMSE of 1.8 years. Our results validate the "bathtub
curve" model in describing equipment failure trends, emphasizing the critical role of preventive
maintenance in mitigating increased failure rates during the wear-out phase. Additionally, the
significant impact of environmental factors, such as temperature and humidity, on equipment lifespan
highlights the need for condition-specific maintenance strategies; for instance, higher temperatures
were shown to reduce equipment life by approximately 8% for every 5°C increase, reinforcing the
importance of environmental monitoring in equipment management. Overall, this approach provides
a comprehensive framework for the reliable and cost-effective operation of electrical systems in
industrial applications. By enabling more accurate lifespan predictions and maintenance planning,
our methodology can help organizations improve equipment reliability, reduce downtime, and extend
asset longevity. Future work could explore applying this model to a broader range of equipment types
and incorporating real-time monitoring for dynamic maintenance scheduling.
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