Бесланеева Замира Олеговна,

Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик

Арахов Эльдар Асланович, студент, КБГУ им. Х.М. Бербекова, Нальчик

Семенов Астемир Русланович, студент, КБГУ им. Х.М. Бербекова, Нальчик

РАЗМЕРНЫЙ ЭФФЕКТ СМАЧИВАЕМОСТИ ПОВЕРХНОСТИ ТВЕРДОГО ТЕЛА НАНОРАЗМЕРНОЙ КАПЛЕЙ И ЛИНЕЙНОЕ НАТЯЖЕНИЕ

Аннотация: Установлена размерная зависимость краевого угла смачивания поверхности твердого тела малой каплей от ее размера R и радиуса линии смачивания r. Определены численные значения удельной линейной энергии $\gamma_{\ell}(r)$ и линейного натяжения $\sigma_r(r)$ для системы наноразмерная капля олова–пленка алюминия. Показано, что угол смачивания $\theta(R,r)$ увеличивается при уменьшении радиуса периметра смачивания.

Ключевые слова: смачиваемость, наноразмерная капля, размерная зависимость, линейное натяжение.

Наносистемы и наноматериалы, являясь ультрадисперсной системой, обладают большим избытком свободной поверхностной энергии, связанной с большой величиной удельной поверхности, что придает им нестабильное состояние. Другая особенность – наличие размерных эффектов физико-химических свойств образующих их наночастиц, заметно меняющих свойства материалов. В связи с этим актуальны исследования размерных эффектов свойств наночастиц в области физики поверхностных явлений. В данной работе изучается влияние размера металлической нанокапли на смачиваемость ею поверхности твердых тел.

Процессы смачивания и растекания являются существенными стадиями многих технологических процессов – очистка поверхности, нанесение покрытий различного назначения, капиллярная пропитка материалов, способы усиления адгезии, упрочнение связи при пайке и т.д. [1-3]. Явление смачиваемости нашло применение для транспортировки жидкости через тонкие капилляры в пористых средах, в том числе в условиях невесомости в космосе, что придает изучению размерного эффекта смачиваемости особое значение. Однако эксперименты для системы наноразмерная капля – поверхность твердого тела сопряжены с трудностями. Мало экспериментальных исследований в условиях, когда обеспечивают контакт свободной нанокапли с чистой поверхностью. В экспериментах по изучению влияния размера капли на краевой угол θ преимущественно рассматривают смачивание поверхности твердых тел каплями островковых конденсатов [4,6]. Поэтому в исследованиях получают нанокапли в виде «островков» на плоской поверхности подложки, покрытой адсорбционным слоем.

На рисунке 1 представлена схема образования краевых углов на плоской поверхности с углами смачивания $\theta \le 90^0$ и $\theta \ge 90^0$. Для капель радиусами $R < 10^4$ нм можно пренебречь влиянием силы тяжести и форму сегмента капли можно считать сферической с основанием в виде круга радиуса г.

Теоретические исследования размерного эффекта смачивания начались еще в 60-х годах в работах Дерягина Б.В., Щербакова Л.М., Задумкина С.Н. [7-9]. Они продолжаются в работах многих специалистов в области физики и химии межфазных явлений, материаловедения, ядерной энергетики и т.д.

Рис.1. Краевой угол капли на плоской поверхности. 1 – твердое тело, 2 – жидкость, 3 – газ, R и г – радиусы сферической капли и периметра смачивания, σ_{ij} – поверхностные натяжения на границах 13, 23 и 12; σ_r – линейное натяжение на линии периметра смачивания.

Угол смачивания каплей поверхности выражается уравнением Юнга

$$\cos\theta = (\sigma_{13} - \sigma_{12})/\sigma_{23}, \qquad (1)$$

где σ_{12} , σ_{13} и σ_{23} – поверхностные натяжения на границах твердое тело – жидкость, твердое тело – газ и жидкость – газ. Для малых размеров капли зависимость поверхностного натяжения от ее радиуса *R* имеет вид [9]:

$$\sigma_{23}(R) = \sigma_{23}(\infty) \left(1 - a/R + b^2/R^2 \right), \tag{2}$$

где постоянные а $\leq 0.2-0.4$ нм и $b \leq 0.1$ нм.

При радиусе нанокапли R < 40 нм следует учитывать влияние линейного натяжения σ_r , которое обусловлено избыточной свободной энергией частиц ΔF_ℓ линии встречи трех поверхностей раздела фаз тв.тело – жидкость – газ, т.е. линии периметра смачивания. Линейное натяжение является аналогом поверхностного натяжения σ и представляет собой удельную линейную силу γ_ℓ на единицу длины вдоль линии встречи трех поверхностей.

Представим γ_ℓ в виде:

$$\gamma_{\ell} = \Delta F_{\ell} / \Delta l \,, \tag{3}$$

представим γ_{ℓ} в виде. $\gamma_{\ell} = \Delta r_{\ell} / \Delta r$, (5) где ΔF_{ℓ} (мДж/м) – избыточная свободная энергия частиц линии встречи трех поверхностей по отношению к свободной энергии частиц в поверхностном слое. Она действует на каждую частицу и направлена вдоль линии встречи поверхностей. В случае искривленной линии смачивания с радиусом кривизны г результирующая сумма линейных сил $\gamma_{\ell}(r)$ будет направлена к центру кривизны периметра смачивания и создавать одномерное линейное натяжение $\sigma_r(r)$ в мН/м [5,8,10]: $\sigma_r = \gamma_{\ell}(r)/r$. (4)

Условие равновесия контура смачивания – линии равновесия трех фаз определяется равенством нулю суммы проекций всех сил поверхностных и линейных натяжений на горизонтальной оси [10] (рисунок 1):

$$\sigma_{12} + \sigma_{23}\cos\theta(R,r) + \sigma_r(r) - \sigma_{13} = 0.$$
⁽⁵⁾

Из условия равновесия (5) с учетом соотношений (1) и (4) получим

$$\cos\theta(R,r) = \cos\theta(R) - \frac{\gamma_{\ell}(r)}{\sigma_{23}(R) \cdot r}, \qquad (6)$$

где $\theta(R,r)$ – угол смачивания поверхности подложки каплей радиуса R и радиуса периметра смачивания г. Из (6) с учетом (2) и (4) получим

$$\cos\theta(R,r) = \left[\cos\theta(\infty) - \frac{\gamma_{\ell}(r)}{\sigma_{23}(\infty) \cdot r}\right] \left(1 - \frac{2a}{R}\right)^{-1}.$$
(7)

Уравнение (7) выражает размерный эффект краевого угла смачивания, которое устанавливает зависимость угла смачивания поверхности от размера нанокапли R и радиуса периметра смачивания г. Отметим, что при $\theta < \pi/2$ и $\theta > \pi/2$ линейное натяжение (ЛН) будет сжимать периметр смачивания и способствовать увеличению краевого угла при уменьшении радиуса г, так как его вектор приложен к линии смачивания и направлен к центру круга. В работах [5,8] отмечается, что для капли размера R < 40 нм величина $\gamma_{\ell} \ge 10^{-6} \, \text{мH}$, поэтому можно ожидать, что влияние ЛН на $\theta(R, r)$ будет заметным при $r < 40 \, \text{нM}$.

Экспериментальные исследования и некоторые их результаты

На рисунке 2 представлены результаты измерения θ для нанокапель олова (а) и свинца (б) на аморфной углеродной подложке в зависимости от радиуса капли. Оказалось, что в интервале размеров капель R < 30 нм при уменьшении их радиусов уменьшается и краевой угол смачивания. Однако эти результаты вызывают сомнения.

Прежде всего жидкая капля находилась на поверхности, покрытой адсорбционным слоем из атомов того же металла и из примесей в газовой фазе, что значительно влияет на угол смачивания. Поэтому полученные результаты не могут соответствовать значениям $\theta(R)$, так как не обеспечен контакт свободной капли с чистой поверхностью и не учтено влияние ЛН периметра смачивания поверхности каплей.

Рис.2. Зависимость краевого угла капли (островковой капли) олова (а) и свинца (б) на поверхности аморфной углеродной подложки от радиуса [4].

В экспериментах работ [11,12] изучали смачивание тонкой нити каплей размерами не менее 100 нм и обнаружили уменьшение краевого угла с уменьшением диаметра нити. Этот эффект объясняется тем, что линейное натяжение в этом случае направлено перпендикулярно поверхности нити.

Создана экспериментальная установка на базе модернизированного электронного микроскопа "TESLA BS – 250". В высоковакуумной камере ЭМ

до 10^{-8} Па размещены система крепления и подачи образцов, нано- и микроманипуляторы и два кантилевера, обеспечивающие ориентировать образец по координатам с нанометровой точностью. Люминесцентный экран дает четкую картину изображения образца с k=10⁵ раз и более. В камере ЭМ можно получить нанокаплю, посадить ее на острие кантилевера, перенести и контактировать с чистой поверхностью подложки в избранной точке и наблюдать картину смачивания нанокаплей чистой поверхности [13]. На фото 3 представлены фотографии изображения переноса капли и контактирования ее с поверхностью подложки. Как видно, капля размером 130 нм смачивает поверхность и начинает растекаться. Капли диаметрами 40 и 32 нм плохо или совсем не смачивают поверхность. Эти картинки подтверждают вывод из уравнения (7) о решающем влиянии ЛН на угол смачивания каплей с r < 30 нм.

Фото 3. Нанокапли олова на острие кантилевера и поверхности подложек. Размеры капли: 1 – 130 нм, 2 – 32 нм и 3 – 40 нм, k=5·10⁴ раз.

Расчет значений линейной силы $\gamma_\ell(r)$ (мН) и линейного натяжения σ_r (мН/м) периметра смачивания нанокаплей поверхности твердого тела

Используя уравнение (7) и результаты экспериментального измерения $\theta(R,r)$, определим значения линейной энергии $\gamma_{\ell}(r)$ по уравнению (7):

$$\gamma_{\ell}(r) = \left[\cos\theta(\infty) - \cos\theta(R, r)\left(1 - \frac{2a}{R}\right)\right] \cdot \sigma_{23}(\infty) \cdot r.$$
(8)

В работе [6] экспериментально изучалась размерная зависимость угла смачивания в системах жидкий металл – металлическая пленка – кристаллическая подложка Bi-Fe-KCl, Sn-Al-KCl, Pb-Ni-NaCl и Pb-Ni-Si от толщины металлических пленок h от 5 до 200 нм. Установлено, что при уменьшении толщины пленки от 80 нм до 5 нм наблюдается увеличение краевого угла $\theta(h)$ от 50-60 до 130-140 градусов. В работе не указаны размеры капель R, поэтому не удается построить функцию $\theta(R)$.

В той же работе изучена зависимость угла смачивания от размера R капель олова на поверхности двух пленок алюминия с толщинами h₁ = 40нм для R=5–60 нм, h₂=110 нм для R=5–10⁴ нм. Мы использовали результаты экспериментов по зависимости $\theta(R,r)$ для расчетов величин $\gamma_{\ell}(r)$ и $\sigma_r(r)$ в зависимости от радиуса г периметра смачивания поверхности Al каплей Sn в системе Sn–Al–KCl. В работе [6] для определения $\theta(R)$ применялась методика, которая подобна описанной в [4]. Изучалась размерная зависимость краевых углов капель островковых конденсатов, полученных путем испарения и конденсации паров олова на подложке из пленок Al по механизму пар – жидкость. Принимались меры по освобождению поверхности подложки от адсорбционного слоя. В [6] в отличии от результатов в [4] обнаружено увеличение $\theta(R)$ при уменьшении R.

Результаты расчетов по уравнению (8) линейной силы $\gamma_{\ell}(r)$ (мН) и линейного натяжения $\sigma_r(r)$ (мН/м), используя экспериментальные данные [6] для краевого угла $\theta(R,r)$, приводятся в таблице 1 и на рисунке 4. Краевые углы определялись для трех сочетаний размеров капель R и толщин пленок h (см. рисунок 4). Значения радиуса периметра смачивания определялись по соотношению $r = R \sin \theta$. В таблице указаны численные значения r и $\theta(r)$, определенные из экспериментальных кривых рисунок 4. Кривая (а) изображает $\theta(r)$ при образовании капли на пленке Al толщиной 40 нм, а кривые (б) и (в) – на пленках Al толщиной 110 нм. Легко видеть из графиков (а), (б) и (в), что уменьшение радиусов г, соответствующих размерам R капель в интервале 70-5 нм, приводит к увеличению угла смачивания $\theta(r)$ в интервале от 110 до 140 градусов. В таблице приводятся также результаты расчетов $\gamma_{\ell}(r)$ и $\sigma_r(r)$ по формуле (8). Имея в виду, что значение $\theta(\infty) \sim 50$ град, определено значение поверхностного натяжения $\sigma_{12} = 721$ мН/м по уравнению Юнга (1) с учетом $\sigma_{13} = 1140$ мН/м и $\sigma_{23} = 544$ мН/м.

Таблица 1

Sn – пленка Al в зависимости от радиуса периметра смачивания r, вычисленного через R								
а) и б) толщина пленки Al h = 40 нм и 110 нм, размер капли Sn R = 5-70 нм								
R, нм	70	60	50	40	30	20	10	5
r , hm	65.35	55.62	46.05	36.24	26.49	15.98	6.69	2.94
heta(r), град	111	112	113	115	118	127	138	144
${\gamma}_\ell$, 10 ⁻⁵ мН	3.55	3.07	2.58	2.09	1.6	1.08	0.5	0.23
σ_r , мН/м	543	552	560	577	604	676	747	782
в) толщина пленки Al h = 110 нм, размер капли Sn R = 10-70 нм								
R, нм	70	60	50	40	30	20	10	
<i>Г</i> , нм	68.95	58.92	48.9	38.96	28.68	17.66	7.07	
heta(r), град	100	101	102	103	107	118	135	
${\gamma}_\ell$, 10 ⁻⁵ мН	3.04	2.66	2.26	1.83	1.45	1.07	0.52	
$\sigma_r^{}$, мН/м	441	451	462	470	506	606	736	

Результаты расчетов линейной силы γ_{ℓ} и линейного натяжения σ_r системы капля

На рисунке 4 приводятся результаты экспериментального определения зависимости угла смачивания $\theta(r)$ поверхности алюминия каплями жидкого олова, размеры которых R лежат в интервале от 5 нм до 70 нм (а, б, в). Для размеров капли в интервале от 700 нм до 1500 нм краевые углы изменялись от 74 до 80 градусов. Расчеты проводились для зависимости $\theta(r)$ от радиуса периметра смачивания $r = R \sin \theta(R)$. При $\theta > \pi/2$, $r = R \sin(180 - \theta)$. Как видно, с уменьшением размеров нанокапель угол смачивания увеличивается, как это следует из уравнения (7), из которого получена и формула (8).

Рис. 4. Зависимость угла смачивания $\theta(r)$ от радиусов R и $r = R \sin \theta$

периметра смачивания поверхности пленки Al каплей Sn при температуре около 380°C. Пленки алюминия толщинами 40 нм (а) и 110 нм (б и в) находятся на поверхности кристаллического KCl.

Из этих расчетов следует, что значения силы линейного натяжения для указанных систем в среднем составляют около $1.84 \cdot 10^{-5} \, \text{мH}$. Линейное натяжение как аналог линейного давления связано с линейной силой γ_{ℓ} и радиусом г кривизны периметра смачивания в виде

$$\sigma_r(r) = \gamma_\ell / r \,. \tag{9}$$

При указанных размерах радиуса периметра смачивания линейное натяжение в среднем $\bar{\sigma}_r(r) = 600 \ MH/M$.

Таким образом, на линию смачивания поверхности нанокаплей действует линейное натяжение в сотни мН/м, направленное к центру кривизны параметра смачивания. Эта сила будет сжимать периметр смачивания, увеличивая угол смачивания. Результаты, приведенные выше, показали, что нанокапли олова радиусом r < 20нм плохо или совсем не смачивают поверхность – угол смачивания равен 140⁰ (рисунок 4), что согласуется с полученными нами результатами.

Выводы

1. Получено уравнение зависимости угла смачивания поверхности твердого тела от размера нанокапли с учетом размерных эффектов поверхностных натяжений и линейного натяжения периметра смачивания.

2. Установлена связь удельной избыточной свободной энергии линии смачивания поверхности твердого тела малой каплей и линейного натяжения периметра смачивания с краевым углом в системе нанокапля – поверхность твердого тела.

3. Проведены расчеты линейной силы $\gamma_{\ell}(r)$ и линейного натяжения $\sigma_r(r)$ нанокапли олова, используя результаты экспериментального определения значений углов смачивания поверхности алюминия нанокаплями размеров от 5 нм до 70 нм. Расчетные данные показали, что с уменьшением размера нанокапли, увеличивается краевой угол. Средние значения линейной силы составляет около $1.84 \cdot 10^{-5}$ мН и линейного натяжения около 600мН/м.

4. В камере модернизированного электронного микроскопа по визуализации зарождения и роста нанокапель встроены нано- и микроманипуляторы, которые позволяют позиционировать нанозонд и захватить своим острием нанокаплю, переносить ее на поверхность твердого тела и определить угол смачивания. Оказалось, что капли олова радиусами R<20 нм не смачивают или плохо смачивают чистую поверхность твердого тела; капли начинают смачивать поверхность при R>70 нм (фото 3).

Список литературы:

1. Найдич Ю.В. Контактные явления в металлических расплавах. К.: Наук. думка, 1972. 196 с.

2. Сумм Б.Д., Горюнов Ю.В. Физико-химические основы смачивания и растекания. М.: Химия. 1976. 232 с.

3. Быховский А.И. Растекание. Киев: Наук. думка. 1983. 192 с.

4. Гладких Н.Т., Дукаров С.В. и др. Поверхностные явления и фазовые превращения в конденсированных пленках. Под ред. Н.Т. Гладких. Харьков: ХНУ им. В.Н. Каразина, 2004. 275 с.

5. Шелудко А., Тошев Б.В., Платиканов Д. // Современная теория капиллярности. К 100-летию теории капиллярности Гиббса. Под ред. проф. А.И. Русанова (СССР) и проф. Ф.Ч. Гудрича (США). Л.: Химия. 1980. 344с.

6. Чижик С.П., Гладких Н.Т., Ларин В.И., Григорьева Л.К., Дукаров С.В. //Поверхность. Физика, химия, механика. 1985. №12. С.111.

7. Дерягин Б.В., Щербаков Л.М. // Коллоидный ж. 1961. Т.23, №1. С.40.

8. Русанов А.Н. // Коллоид. ж. 1977. Т.39, №4. С. 704.

9. Хоконов Х.Б., Задумкин С.Н. // ФММ. 1962. Т.13, В.5. 658.

10. Тегаев Р.И., Бесланеева З.О., Трунов С.В., Хоконов Х.Б. // Вестник КБГУ. Серия Физические науки. Нальчик: Каб.-Балк. ун-т. 2009. В. 12. С.6.

11. Щербаков Л.М., Новоселов А.Р., Честюнен В.П. // Адгезия расплавов и пайка материалов. 1978. Т.72, №10. С.1439.

12. Хоконов Х.Б., Золкин П.Н., Карамурзов Б.С., Абитов А.Н. // Сб. трудов №15. М.: НИИ Графит. 1982. С. 111.

13. Тегаев Р.И., Хоконов Х.Б., Карамурзов Б.С. и др. // Известия РАН. Серия физическая. 2008. Т.72, № 10. С 1439.

