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Annortanus. L{ens paboThl COCTOUT B KOMITBIOTEPHOU WH)KEHEPUHU U MAaTEPUAIIOBEICHUE: MO-
JenupoBanue, nHTepnperanust N-MepHOH B IByXMEpPHYIO M BHIOOp ONTHUMAaIbHBIX MapaMeTPOB WH-
KEHEPHOH cuCTeMbl Ha 6a3e MHOTOMEPHOM MaTeMaTUKH (pa3aeil: TEOPUH U METOI0B BEKTOPHOM OI-
TI/IMI/ISaHI/II/I). B paMKax TCOpHU BGKTOpHOﬁ OIITUMU3AIUU ITPEACTABIICHBI IIPUHIMWIILI OIITUMAaJIbHOCTH
penreHns BEKTOPHBIX 3a/1a4 IIPH PaBHO3HAYHLIX KPUTCPHUAX U IIPU 3aJaHHOM IIPHOPUTETES KPUTCPHU
https://rdcu.be/bhZ8i. (Pabora "Vector optimization with equivalent and priority criteria™ Springer
Nature pacmpoctpansiercs: 6eciuiatho.). Ha ocHoBe Teopun pa3paboTaHbl KOHCTPYKTHBHBIE METOIbI
peuICHuA 3aaa4 BCKTOpHOfI ONTUMHU3AlINHU, KOTOPBIC IIO3BOJIAIOT OLUCHHWBATH 3KCIICPUMCHTAJIBHBIC
JTaHHBIC, BO-TICPBBIX, IPH PAaBHO3HAYHBIX KPUTECPHUAX, BO-BTOPLIX, IIPH MOJACIUPOBAHNN WHIKCHEPHBIX
CHUCTEM C 3aIaHHBIM IIPUOPUTETOM KPUTECPU ITPHU IPHUHATHHN OIITUMAJIBHOI'O PCIICHUSA. HpaKTI/I‘IeCKaﬂ
HAIIpaBJICHHOCTH IOKa3aHa IpHU aBTOMAaTU3UPOBAHHOM IIPOCKTUPOBAHUHU Ha Oase BCKTOpHOfI OIITHU-
MU3aAlUN UHKCHEPHBIX CUCTEM, KOTOPBIM OTHOCATCA CTPYKTypa MaTcCpualiad. I[J'Iﬂ STOH oejn pas3pa-
00TaHO MPOrpaMMHOE OOECTIEUeHUE pEeIIeHNs BEKTOPHBIX 3a1a4 HenuHeitHoro (B3HIT) nporpammu-
poBanus. [Iporpammuoe o6ecnedenue pemenust BSHIT ucnonb3yrores npu nudposoii Tpancdopma-
WU TMIPUHATHUSA OINTUMAJIbBHBIX pGHICHI/Iﬁ B MHXXCHCPHBIX 3aJaydax. YucneHHrle MpUMCEPHI NIPCACTAB-
JeHbI MU POBOH TpaHChHOPMAITUEH PUHSITHS ONTUMAIBHBIX PEIISHUN 10 CTPYKTYpe MaTepHaia.

[Ipn npUHATHN ONTUMAIBHBIX PEHIEHUH B MHKEHEPHBIX CUCTEMAaX pa3pad0TaHO: IOCTPOEHUE
HCXOJIHBIX JIAHHBIX (TEXHUYECKOE 3aJaHMe) JUIS MOJCIUPOBAHMS CTPYKTYPhl MaTepHala; mpeoopa-
30BaHUE MaTeMAaTUIECKOU MOZCIIN CTPYKTYPhI MaTCpUajia B yCIOBUAX HCOIIPCACICHHOCTU B MOACIIb
B YCJIOBHUAX OIIPCACIICHHOCTHU, IIPHUHATUC OIITUMAJIbHOI'O PCIHICHHA (KOTOpOC BKIINOYACT MapaMETpPhI U
XapaKTepUCTUKU MaTepuaia) ¢ paBHO3HAUYHBIMU KPUTEPUSAMU; IPUHATHE ONTUMAJIBLHOTO PELICHHUS C
3a/IaHHBIM ITPHOPUTETOM KPUTCPHUA.

Abstract. The purpose of the work is in computer engineering and materials science: modeling,
interpretation of N-dimensional into two-dimensional and selection of optimal parameters of an en-
gineering system based on multidimensional mathematics (section: theory and methods of vector op-
timization). Within the framework of the theory of vector optimization, the principles of optimality
of solving vector problems with equivalent criteria and with a given priority of the criterion are pre-
sented https://rdcu.be/bhZ8i. (The work "Vector optimization with equivalent and priority criteria»
by Springer Nature is distributed free of charge.). On the basis of the theory, constructive methods
for solving vector optimization problems have been developed, which make it possible to evaluate
experimental data, firstly, with equivalent criteria, and secondly, when modeling engineering systems
with a given criterion priority when making an optimal decision. Practical orientation is shown in
computer-aided design based on vector optimization of engineering systems, which include the struc-
ture of the material. For this purpose, software for solving vector problems of nonlinear programming
(VPNP) has been developed. VPNP solution software is used in the digital transformation of optimal
decision-making in engineering problems. Numerical examples are presented by the digital transfor-
mation of optimal decision-making on the structure of the material. To make the optimal decision in
engineering systems (on the example of the structure of the material), the following has been devel-
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oped: the construction of initial data (technical specification) for modeling the structure of the mate-
rial; transformation of a mathematical model of the structure of a material under conditions of uncer-
tainty into a model under conditions of certainty; making an optimal decision (which includes param-
eters and characteristics of the material) with equivalent criteria; making an optimal decision with a
given priority criterion.

KuaroueBsble ciioBa: HxxeHepHas cucteMa, Teoprsi MHOTOMEpHOM MaTEMAaTUKH, AKCUOMAaTHKa
BEKTOPHOM ONTUMM3aLMK, MeTono0orus MoJeaupoBanus, MaremaTuueckoe U mporpaMMHOe oOec-
IIEYCHHUEC, CIIOKHAA TCXHUYCCKAsA CUCTEMA CTPYKTYypa MaTcpuala.

Keywords: Engineering System, Theory of Multidimensional Mathematics, Axiomatics of
Vector Optimization, Modeling Methodology, Mathematical and Software, Complex Technical Sys-
tem Material Structure.

1. Introduction.

The study of the development of engineering systems and materials science, in particular, has
shown that their development depends on a certain set of functional characteristics that must be taken
into account at the design stage. Analysis of the functioning of engineering systems showed that
improvement in one of the characteristics leads to the deterioration of other characteristics. To im-
prove the functioning of the engineering system as a whole, it is necessary to improve all character-
istics as a whole, [1, 2].

The mathematical model of such (engineering) systems is represented by multi-criteria opti-
mization problems and, as a result, the solution of multi-criteria (vector) problems of mathematical
programming is required. Research on this class of problems began more than a hundred years ago
in Pareto V. [3]. Further research on multi-criteria optimization was carried out both at the theoret-
ical level by foreign [4, 5, 6, 34-39] and Russian authors [13, 14, 15-33], and on solving practical
problems first in the field of Economics [15, 16, 44], and then in the field of engineering systems
[7-12, 16-33, 44].

The purpose of the work is to analyze, build a mathematical model of the structure of the ma-
terial, study the processes of digital transformation of the development of engineering systems in
conditions of certainty and uncertainty, the choice of optimal parameters of the structure of the ma-
terial based on the theory and methods of vector optimization.

Within the framework of the theory of vector optimization, the principles of optimality of solv-
ing vector problems with equivalent criteria and with a given priority of the criterion are presented
and constructive methods for solving vector optimization problems are shown. For modeling and
digital transformation of engineering systems, vector problems of nonlinear programming were used,
which were solved under conditions of certainty and uncertainty.

To achieve this goal, the work presents two areas of research: mathematical, software and the
applied field. In the field of mathematical and software, the characteristic is presented, the analysis
and study of vector optimization problems is carried out, [13, 14, 15-33, 44]. Within the framework
of the theory of vector optimization, axiomatics and principles of optimality for solving vector prob-
lems with equivalent criteria and with a given priority of the criterion are presented.

On the basis of the principles of optimality, constructive methods for solving vector optimiza-
tion problems have been developed, which make it possible to make an optimal decision, firstly, with
equivalent criteria, and secondly, with a given priority of the criterion. In the study of the problem of
vector optimization, a numerical solution of the vector problem of nonlinear (convex) programming
with four homogeneous criteria.

In the applied part of the work, in organizational terms, the process of modeling and simulating
the structure of the material is presented in the form of a methodology: "Methodology for choosing
the optimal parameters of engineering systems under conditions of certainty and uncertainty". (Tech-
nical systems [16-32], technological processes [16, 22], materials [18, 44]),

The tasks that arise in the process of making an optimal decision on the selection of optimal
parameters of complex engineering systems include three types sequentially. 1 type. Solution of a
vector problem with equivalent criteria. The result obtained is the basis for further research of the
system. In this case, the method of solving a vector problem with equivalent criteria is used.
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If the result obtained satisfies the decision-maker (decision-maker - designer), then it is taken
as a basis. If the solution does not satisfy the decision-maker, then we move on to the 2nd type (direct
task) related to changing the parameters; or the 3rd type of solving vector problems (Inverse problem:
"What will be the parameters of complex technical systems with given characteristics).

In organizational terms, the process of modeling and simulation of a complex engineering sys-
tem, which includes three types of the above tasks, is formed in the form of a methodology: "Meth-
odology for Selecting the Optimal Parameters of Complex Engineering Systems in Conditions of Cer-
tainty and Uncertainty", [18, 44].

The methodology includes three blocks, divided into a number of stages: Block 1. Formation
of technical specifications, transformation of uncertainty conditions into certainty; Block 2. Method-
ology of the process of optimal decision making (selection of optimal parameters) in an engineering
system based on vector optimization (the process of simulation of an engineering system). Block 3.
Research, design, geometric interpretation of the transition from N-dimensional space and selection
of optimal parameters of a complex engineering system (material structure) in multidimensional
mathematics.

The implementation of all blocks of the methodology is shown by a numerical example (mate-
rial structure).

2. Problem statement. Building a Mathematical Model of Material Structure under Con-
ditions of Certainty and Uncertainty.

Chemical composition of material of a product is defined (on unit of volume, weights) by the
percentage maintenance of some set of components of material which are equal in the sum to hundred
percent. The composition of material, is characterized by a particular set of the functional character-
istics which include mechanical and physical and chemical characteristics of materials. One group of
properties (the functional characteristics) of material is characterized by the fact that it is desirable to
receive them on the numerical value as much as possible (for example, durability), other group of
properties is characterized by the fact that is desirable to receive them on the numerical value less as.
Improvement on one of these characteristics leads another to deterioration. In general, it is required
to pick up such composition of material that all properties of material were as it is possible better in
total.

2.1. Mathematical model of structure of material

Discusses the composition of the material, any product, technical system that depends on a
number of material component: Y = {y,,y,,..., vy}, where V is the set of components of the material,
Y={y,j= 1,V}, V is the number of components of which it can be made (fabricated) material, yy,
is the size as a percentage vth of a material component, each of which lies in the given limits:

Vr<y, <yt v =1,V, (2.1)
where yM" ymax vy € V are the lower and upper limits of the change in the vector of the material
components.

Ty ¥5(t) = 100%, (2.2)
the sum of all the components of the material is one hundred percent.

The composition of material is estimated by set K physical properties of material:

H(Y) = {h(Y),k = 1K}, (2.3)
which functionally depend on design data of Y = {y;,j = 1,V}";

k is the index of a type of physical properties of material, k = 1, K, where K - number of types
of properties (the functional characteristics) of material, we will present them in the form a vector —
functions.

H(Y) is a vector function (vector criterion) having K a component function:

H(Y) = {h(Y),k = 1,K}.

The set K consists of sets of K, a component of maximization and K, of minimization;

K = K,UK,;

H(Y) = {he(Y), k =1,K;} is maximizing vector-criterion, K; — number of criteria, and
K,=1, K, is a set of maximizing criteria. Let's further assume that H, (Y) = {h,(Y), k =1,K;} isthe
continuous concave functions (we will sometimes call them the maximizing criteria);
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H,(Y) = {h(Y), k =1,K,} is vector criterion in which each component is minimized,
K,=K; + 1,K=1,K, - asetof minimization criteria, K, — number. We assume that h,(Y),k = 1,K,
is the continuous convex functions (we will sometimes call these the minimization criteria), i.e.:

KiUK, = K,K,cK,K,cK.

We use characteristics of the material H(Y) = {h,(Y),k = 1,K}

as criterion, and change limits imposed on each type of components as parametrical restrictions.
We will present the mathematical model of material solving in general a problem of the choice of the
optimal design solution (the choice of optimum structure of material) in the form of a vector problem
of mathematical programming:

Opt H(YY) = {max H,(Y) = {maxh, (Y), k=1,K, , (2.4)

min H,(Y) = {min h, (Y), k =1,K,}}, (2.5)

at restrictions G (X) <B, (2.6)
Vo1 Yo () = 100%, (2.7)

vain < Vo < vaax’ v = L_V, (28)

where Y = {y;,j = 1,V} is a vector of the operated variables (a material component) from (2.1);

H(Y) = {h(Y),k = 1,K} is vector criterion which each function submits the characteristic
(property) of material which is functionally depending on a vector of variables Y;

GY) ={g,(Y),...,gu(¥Y)}" is a vector function of the restrictions imposed on structure of
material, M — a set of restrictions.

It is supposed that the functions H(Y) = {h,(Y),k = 1,K} are differentiated and convex,
G(Y) ={g;(V),i =1,M}7T are continuous, and (2.6)-(2.8) set of admissible points of S set by re-
strictions are not empty and represents a compact:

S={XeR™GX) < 0,XM™M" < X < XM} % ¢ - (2.9)

The relations (2.4)-(2.8) form mathematical model of material. It is required to find such vector
of the Y° € § parameters at which each component (characteristic) the vector - functions H, (V) ac-
cepts the greatest possible value, and a vector - functions H, (Y) accepts minimum value:

Hy (V) = {hi (), k =T Ky},
H,(Y) = {h(Y), k =1,K,}. (2.10)

In this article a research of design properties of material is considered in statics. However,
structure of material can be considered in dynamics (for example, at change of external temperature
for some period of time). For this purpose, it is possible, to use differential-difference methods of
transformation [4] and to conduct research for a small discrete time termAt € T. In set the mathemat-
ical model of material (2.4)-(2.8) can be treated as systems approach to a material research.

2.2. Creation of mathematical model of structure of material in the conditions of certainty
and uncertainty

At creation of mathematical model of material (2.4)-(2.8), as well as for technical system [20-
26], conditions are possible: certainty and uncertainty.

2.2.1. Creation of mathematical model of material in the conditions of certainty

Conditions of a certainty are characterized by the fact that the functional dependence of each
characteristic (property) of material and restrictions on design components of material is known.
For creation of the functional dependence, we perform the following works.

1. We form a set of all functional characteristics (properties) of material K. The size of the
characteristic we will designate h, (Y), k = 1, K. We define a set of all components of material ¥ on
which these characteristics depend. We will present sizes of parameters in the form of a vector of
Y = {y;,j = 1,V}. We give the verbal description of characteristics of material.

2. We conduct research of the physical processes proceeding in material. For this purpose, we
use fundamental laws of physics: model operation of magnetic, temperature profiles; laws of con-
servation of energy, movements etc. We establish informational and functional connection of char-
acteristics of material and its parameters:

H(Y) = {h(Y),k = 1,K}.

3. We define the functional restrictions:

ht™ < by < AP,k = 1K, or H™M" < H < H™%;
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and parametrical restrictions:
ygnin <y, < ygnax’v — W’ or ymin <Y < ymax
The sum of all components of material is equal to hundred percent: ¥_, v, (t) = 100%.
4. As a result we will construct mathematical model of material in the form of a vector problem
of mathematical programming:

Opt H(Y) = {max H,(Y) = {maxhy (Y), k =1,K;}, (2.10)
min H,(Y) = {minh;, (Y), k =1,K,}}, (2.11)

H™n < H < H™MeX, (2.12)

at restrictions  YV_, y,(t) = 100% , (2.13)
W<y, Syt v =17, (2.14)

The problem (2.10)-(2.14) is adequate problem (2.4)-(2.8).
2.2.2. Creation of mathematical model of material in the conditions of uncertainty
Conditions of uncertainty are characterized by the fact that there is no sufficient information on
the functional dependence of property of material from structure of components. In this case the pi-
lot studies are conducted.
For the given number of compositions of the materials:
Vi =wv=1V}i=1M,
the corresponding set of properties are defined:
H(Y) = {(h(Y),k =TK},i = T, M.
Taking into account it the matrix of experiments on research of structure of material takes a
form:
1= v =1LV} (V) .. he(Yr)
[ = : (2.15)
Yy = Omw, v = 1, Vi by (V) - he(Yyy)
where the veV column represents a numerical value vth of a material component as a percentage,
v =1,V , and the keK column represents a numerical value of kth of property of material, k =
1, K. The problem of the person, the making decision, (the designer) consists in the choice of such
alternative which would allow to receive "in the greatest measure (optimum) result arranging it"
[18, 20]. The set of criteria (characteristics) of K is subdivided into two subsets of K =
K,UK, K,c K,K,c K.
K is a subset of characteristics which numerical values it is desirable to receive as it is pos-
sible above:
L(Y) = {h(Y;,i = 1, M),k = 1,K;} > max.
K, are subsets of principal specifications which numerical values it is desirable to receive,
as low as possible:

L) ={he(Y;,i =1,M),k =1,K,} - min.
The solution of a problem of a decision making on structure of material (2.15) it is in es-
sence close to the solution of a vector problem of mathematical programming which in the condi-
tions of uncertainty will take a form:

Opt H(Y) = {max I, (Y) = {maxhy (Y;,i =1,M), k =1,K,}, (2.16)
minl,(Y) = {minh, (Y;,i = 1,M), k =1,K,}}, (2.17)

at restrictions h*™(Y;,i = 1, M) < hy < h**(Y;,i = 1, M),k = 1,K, (2.18)
Y-y yy(£) = 100%, (2.19)

pmin < gy < ymax g, = 17, (2.20)

where Y; = {y;;,j = 1,V},i = 1, M is a vector of operated variable (constructive parameters);
H(Y;) = {I,(Y;), I;(Y;)} is vector criterion which each component submits the characteristic
(property) of material which is functionally depending on the size of discrete value of a vector of
variables Y;,i = 1, M; M is set of discrete values of a vector of the variables Y;,i = 1, M;
in (2.18) KM (Y;) < hy, < hP*(Y;),k = 1,K is a vector function of the restrictions imposed
on function of material of a product, y" < y, < y** v = 1,V are parametrical restrictions.
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2.3. Creation of mathematical model of material in the conditions of certainty and uncertainty
in the form of a vector problem

In actual life of a condition of a certainty and uncertainty are combined. The material model
also reflects these conditions. Let's unite models (2.10)-(2.14) and (2.16)-(2.20). As a result, we will
receive material model in the conditions of certainty and uncertainty in total in the form of a vector
problem of mathematical programming:

Opt H(Y) = {max H, (Y) = {maxh, (), k =1,K’}, (2.21)
max [, (Y) = {max hy (Y;,i = 1,M), k =1,K}""*¢}, (2.22)

min Hy(Y) = {min by (V), k =1,K5), (2.23)

min[,(Y) = {minh, (Y;,i = 1,M), k =1,K;'"}}, (2.24)

at restrictions A" < hy < KM k = 1,K, (2.25)
v .y, =100%, (2.26)

ymin < g < ymax gy = 7, (2.27)

where Y - a vector of the operated variables (design data of material);

H(Y) ={H,(Y) I,(Y) H,(Y) I,(Y)} is vector criterion which each component represents a vec-
tor of criteria (characteristics) of material which functionally depend on values of a vector of variables
Y, Kldef, szef(definiteness), K¢, K3*¢ (uncertainty) - the set of criteria of max and min created in
the conditions of a certainty and uncertainty; in (2.25) vector function of the restrictions imposed on
material functioning under production conditions, (2.27) parametrical restrictions.

3. Introduction to Multidimensional Mathematics: Analysis, Vector Problem of Mathe-
matical Programming, Theory, Axioms and Axiomatic Methods, Principles of Optimality

Mathematical models of the structure of material (2.21)-(2.27), as well as models of technical
systems, technological processes and dynamical systems are represented by vector problems of math-
ematical programming (VPMP), [16 - 21, 44]. Further development of the study of works on the
theory of vector optimization led to the formation of "Multidimensional Mathematics".

3.1. Analysis of the Development of Modern Mathematics.

The analysis of modern mathematics was carried out in accordance with [1, pp. 560 — 563].

Mathematics is the science of quantitative relations and spatial forms of the real world. Mathe-
matics, as a science, became possible after the accumulation of sufficiently large factual material,
arose in ancient Greece in the 6th — 5th centuries BC, in accordance with [1] four periods.

1. The origin of mathematics. In the early stages of development, counting objects of existence
led to the creation of the simplest concepts of arithmetic of natural numbers.

2. The period of elementary mathematics. The study of the objects of existence led to the cre-
ation of the simplest concepts of arithmetic calculations, the determination of areas, volumes, etc.

3. The period of creation of the mathematics of variables. In the 17th century, a new period in
the development of mathematics began. The concept of function, which determines the interrelation
of variables (parameters) of the object under study, comes to the fore. The study of variables and
functional dependencies leads further to the basic concepts of mathematical analysis, to the concept
of limit, derivative, differential, and integral. An analysis of infinitesimals is created in the form of
differential and integral calculations, which makes it possible to relate finite changes in variables to
their behavior on the decision (function) being made. The basic laws of mechanics and physics are
written in the form of differential equations, and the task of integrating these equations is one of the
most important tasks of mathematics.

4. Modern mathematics. All of the branches of mathematical analysis created in the 17th and
18th centuries continued to evolve into the 19th, 20th, and 21st centuries. As the basic apparatus of
the new fields of mechanics and mathematical physics, the theory of ordinary differential equations,
partial differential equations, and computational mathematics is being intensively developed. The
problems of finding the best solution in the problems of controlling physical or mechanical systems,
described by differential equations, led to the creation of the theory of optimal control.

In general, the process of development of mathematics shows that when solving mathematical
problems, there was a study and analysis of a separate function (one-dimensional), depending on a
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certain set of variables (parameters) of the object or system under study. (For more details, see [1,
pp. 560 — 563]).

In real life, the object under study, the system, in its functioning (development), is characterized
by a certain set of functional characteristics that depend on the same parameters of the system.
Hence, the problem of multidimensionality of the objects and systems under study has become a
general scientific one.

To solve the problem of multidimensionality, we will present a vector (multidimensional) op-
timization problem and consider the theory (axiomatics, principles of optimality) of its solution, [15,
29, 44].

3.2. A vector problem of mathematical programming

A vector problem in mathematical programming (VPMP) is a standard mathematical-program-
ming problem including a set of criteria, which, in total, represent a vector of criteria.

It is important to distinguish between uniform and non-uniform VPMP:

A uniform maximizing VPMP is a vector problem in which each criterion is directed towards
maximizing;

A uniform minimizing VPMP is a vector problem in which each criterion is directed towards
minimizing;

A non-uniform VPMP is a vector problem in which the set of criteria is shared between two
subsets (vectors) of criteria (maximization and minimization respectively), e.g., non-uniform VPMP
are associated with two types of uniform problems.

According to these definitions, we will present a vector problem in mathematical programming
with non-uniform criteria [6, 20, 22] in the following form:

Opt F(X) = {max F,(X) = {max f;, (X), k =1,K,, (3.1)
min F,(X) = {min fi, (X), k =1,K;}}, 3.2)

G(X) <B, (3.3)

X>0, (3.4)

where X = {x;, j = 1,N} is a vector of material variables, N-dimensional Euclidean space of RY,
(designation j=j = 1, N isequivalenttoj=1,...,N);

F(X) is a vector function (vector criterion) having K —a component functions, (K - set power
K), F(X) = {f,,(X), k = 1,K}. The set K consists of sets of K1, a component of maximization and
K> of minimization; K=Ki1UK?z therefore we enter the designation of the operation "opt,” which in-
cludes max and min;

F,(X) = {fi,(X), k =1,K;} is maximizing vector-criterion, K1 — number of criteria, and
K,=1, K, is a set of maximizing criteria (a problem (3.1), (3.3), (3.4) represents VPMP with the ho-
mogeneous maximizing criteria). Let's further assume that £, (X), k = 1, K; is the continuous concave
functions (we will sometimes call them the maximizing criteria);

F(X) = {f,(X), k =1,K,} is vector criterion in which each component is minimized,
K,=K; +1,K=1,K, - a set of minimization criteria, K2 — number, (the problems (3.2)-( 3.4) are
VVPMP with the homogeneous minimization criteria). We assume that f; (X), k = 1, K, is the contin-
uous convex functions (we will sometimes call these the minimization criteria), i.e.,

KiuKz = K, KicK, KocK. (3.5

G(X)<B, X > 0isstandard restrictions, g;(X)<b;,i = 1,..., M where bi - a set of real numbers,
and g, (X) are assumed continuous and convex.

S = {XeR™X>0,G(X)<B,X™Mn" < X < X™M*} = @, (3.6)
where the set of admissible points set by restrictions (3.3)-( 3.4) is not empty and represents a com-
pact. The vector minimization function (criterion) F,(X)can be transformed to the vector maximiza-
tion function (criterion) by the multiplication of each component of F,(X) to minus unit. The vector
criterion of F, (X) is injected into VPMP (3.1)-( 3.4) to show that, in a problem, there are two subsets
of criteria of K, K, with, in essence, various directions of optimization.

We assume that the optimum points received by each criterion do not coincide for at least two
criteria. If all points of an optimum coincide among themselves for all criteria, then we consider the
decision trivially.
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3.3. The theory of vector optimization

The theory of vector optimization is aimed at solving vector problems of mathematical pro-
gramming (3.1) - (3.4) with uniform and non-uniform criteria. The theory of vector optimization
includes theoretical foundations: axiomatics, principles of optimality, and methods for solving vector
problems, firstly, with equivalent criteria and, secondly, with a given priority of the criterion.

In accordance with this definition, the "Theory of Vector Optimization™ includes the following
sections. Basic theoretical concepts and definitions that will be used in the construction of axiomatics
(axiomatics of Y.K. Mashunin), principles of optimality and methods for solving problems of vector
optimization. The axiomatics of Y.K. Mashunin is divided into axiomatics, principles of optimality
and methods for solving vector problems, firstly, with equivalent criteria and secondly, with a given
priority of the criterion.

The concept of solving vector optimization problems with equivalent criteria. The concept of
vector optimization with criterion priority. Symmetry in VVector Problems of Mathematical Program-
ming: Research, Analysis.

Collectively, the theory of vector optimization represents the mathematical apparatus of mod-
eling and making the optimal decision of the "object of decision-making".

The "object of decision-making" is: the social system, the economic and technical system. The
mathematical apparatus allows you to choose any point from the set of points optimal according to
Pareto, and show its optimality. We presented axiomatics, the principle of optimality and methods
for solving problems of vector optimization (3.1) - (3.4) with equivalent criteria and a given priority
of criteria. [6, 20]. For simplicity of research, the criteria and limitations of VPMP (3.1) - (3.4) are
represented by polynomials of the second degree, i.e. convex vector problems are considered, which
also include vector linear programming problems. Convex VPMP are characterized by the property
that an optimum point exists and there is only one such point (Weierstrass Theorem).

3.4. Theoretical Foundations: Axioms and Axiomatic Methods.

An axiom is a statement that does not require logical proof. On the basis of these statements
(initial assumptions), one or another theory is built.

The axiomatic method is a method of constructing a scientific theory, in which the theory is
based on some initial assumptions called the axioms of the theory. As a result, all other provisions of
the theory are obtained as logical consequences of axioms [41, 2].

In mathematics, the axiomatic method originated in the works of ancient Greek geometers. An
example of the axiomatic method is the ancient Greek scientist Euclid, whose axioms were laid down
in his famous work "Elements".

The axiomatic method was further developed in the works of D. Hilbert in the form of the so-
called method of system formalism. The general scheme of building an arbitrary formal system ('S™)
includes:

1. The language of the system ("'S"), including the alphabet — this is a list of elementary symbols;
the rules of formation (syntax) on which the formulas "S™ are built.

2. Axioms of the "S" system, which represent a certain set of formulas.

3. Rules for the withdrawal of the "S" system [41].

In the application to the solution of the problem of vector optimization (multidimensional math-
ematics), axiomatics is divided into two sections: 1. Axiomatics of solving the vector optimization
problem with equivalent criteria; 2. Axiomatics of solving the vector optimization problem with a
given priority of criteria. Only with the construction of the initial axiomatics is it possible in the future
to construct the principle of optimality and the resulting algorithms for solving vector problems of
mathematical programming.

4. Theory, axiomatics, the principle of optimality and methods for solving vector optimi-
zation problems: equivalent criteria and with a Criterion Priority

4.1 Theory, axiomatics, the principle of optimality and methods for solving vector optimiza-
tion problems: equivalent criteria

The axiomatics of vector optimization with equivalent criteria, as well as the theoretical axio-
matics recommended by D. Hilbert [41, p. 111], includes three sections: 1) the language of the system
in the form of definitions of the normalization of criteria and relative evaluation; 2) the axiomatics of
the equality of criteria in the vector optimization problem; 3) the principle of optimality of the solution
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of the vector problem, on the basis of which a constructive method for solving the vector optimization
problem with equivalent criteria is formed.

4.1.1. System language: Normalization of criteria, relative assessment

Definition 1. Normalizing of the criterion.

Normalizing criteria (mathematical operation: the shift plus rationing) presents a unique display
of the function f;,(X) Vk € K, in a one-dimensional space of R(the function f,(X) Vk € K repre-
sents a function of transformation from a N-dimensional Euclidean space of RN in R'). To normalize
criteria in vector problems, linear transformations will be used:

fi(X) = apfy(X) + c,Vk €K, or
_ fill) = (i) +c)/ay VK €K, _ (4.1)
where f,(X) ,k = 1, K - aged (before normalization) value of criterion; f.(X), k = 1, K - the normal-
ized value, ay, C), - constants.

Normalization of criteria (4.1) fi,(X) = (fy (X) + c,)/ax Vk €K is a simple (linear) invariant
transformation of a polynomial, as a result of which the structure of the polynomial remains un-
changed. In the optimization problem, the normalization of criteria f,, (X) = (f, (X) + cx)/ay Yk eK
does not affect the result of the solution. Indeed, if the convex optimization problem is solved:

maxy.s [ (X), then at the optimum point X* e S: % =0. 4.2
In the general case (including the normalization of the criterion (1)), the problem is solved:
maxyes (arfi (X) + ), (4.3)
then at the optimum point X* e S:
dlarf(XD+e) _  d(f(X9) | dlew) _
i = Q= + TRl 0. (4.4)

The result is identical, i.e. the optimum point X;, k = 1,K is the same for non-normalized
and normalized problems.
Definition 2. Relative evaluation of the function (criterion).
In the vector problem (3.1)-(3.4), normalize (4.1) of the form:
heC) = B g e i, (4.5)
k/k
A (X) is the relative estimate of a point X € S kth criterion f; (X) - kth criterion at the point X € §;
fi. - value of the kth criterion at the point of optimum X;, obtained in vector problem (3.1) -
(3.4) of individual kth criterion; £ is the worst value of the kth criterion (ant optimum) at the point
X? (Superscript 0 - zero) on the admissible set S in vector problem (3.1)-(3.4);
the task at max (3.1), (3.3), (3.4) the value of £, is the lowest value of the kth criterion
fie = minyesfi(X) Vk € Ky,
and task min (3.2), (3.3), (3.4) the value of £ is the greatest value of the kth criterion:
fie = maxyesfi(X) Vk € K,.
The relative estimate of the A, (X) Vk € K is first, measured in relative units;
secondly, the relative assessment of the 1, (X) Vk € K: on the admissible set is changed from
zero in a point of X2: vk € K lim 24, (X) = 0, to the unit at the point of an optimum of X:

XXy,
Vk € K lim 2,(X) = 1:
XXy
VkeK0<1,(X)<1,XES. (4.6)

As a result of this normalization, all the criteria of the VPMP are (3.1)-(3.4) are comparable in
relative units, which allows comparing them with each other, using criteria for joint optimization.

Definition 3. The operation of comparing relative estimates of a function (criterion) with each
other.

Since any function (criterion) is represented in the relative estimates of the functions
A (X) Vk € K, which lie within the range of (4.6) Vk € K 0 < A, (X) < 1, itis possible to compare
the relative estimates by numerical value. For comparison, the "subtraction™ operation is used. If two
functions (criteria) measured in the relative estimates A, (X) and 1;-,(X) Vk € K are compared,
then three situations are possible:

the first, when A, —; (X) > A, (X);
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the second, when A;—; (X) = 24—, (X); 4.7
the third, when A, _; (X) < 24—, (X). (4.8)

The first and third situations are explored in Section 6.

This section 5 examines the second situation.

4.1.2. Axiomatics of Vector Optimization with Equivalent Criteria

Axiom 1. On the equivalence of criteria at an admissible point of a vector problem of mathe-
matical programming.

In of vector problems of mathematical programming two criteria with the indexes k € K,q €
K shall be considered equivalent in X € S point if relative estimates on kth and gth to criterion are
equal among themselves in this point, i.e. 4, (X) = 4,(X), k,q € K.

Explanation. If at point X € S the functions (criteria) are equal to:

A(X) =0,451 € Kand A,(X) = 0,45,q € K (i.e., 45% of its optimal value, which in relative
units is equal to 1), then such criteria are not “"equal™ to each other, but are equivalent in their numer-
ical value. And each of them carries its own functional meaning, which can be obtained using the
normalization of criteria (4.5).

Definition 4. Definition of a minimum level among all relative estimates of criteria.

The relative level A in a vector problem represents the lower assessment of a point of XeS
among all relative estimates of 1, (X),k = 1,K:

VX EeSA<A4(X),k=1K, (4.9)
the lower level for performance of a condition (4.9) in an admissible point of X S is defined by a
formula:
VXeSAh= minkeKﬂ.k(X). (410)

Ratios (4.9) and (4.10) are interconnected. They serve as transition from operation (4.10) of
definition of min to restrictions (4.9) and vice versa.

The level A allows to unite all criteria in a vector problem one numerical characteristic of A
and to make over her certain operations, thereby, carrying out these operations over all criteria meas-
ured in relative units. The level A functionally depends on the X € § variable, changing X.

We can change the lower level - A. From here we will formulate the rule of search of the opti-
mum decision. Therefore, by changing X, we can change everything 4, (X),k = 1,K and, accord-
ingly, the lower level A = ming.x4,(X), which is a characteristic of a multidimensional (multi-
functional) system.

Explanation. The value of the relative estimate Vke K 1, (X) is a characteristic of a one-dimen-
sional system, and the value of the minimum relative level A = min, x4, (X) is a characteristic of
multidimensional mathematics.

4.1.3. The principle of optimality of solving a multidimensional (vector) optimization problem
with equivalent criteria.

Definition 5. The principle of an optimality of solving a multidimensional (vector) optimiza-
tion problem with equivalent criteria.

The vector problem of mathematical programming at equivalent criteria is solved, if the point
of X° € § and a maximum level of A° (the top index o - optimum) among all relative estimates such
that is found

L’ = maxyegmingegAy (X) (4.11)
Using interrelation of expressions (4.9) and (4.10), we will transform a maximin problem
(4.11) to an extreme problem:
L’ = maxyeg A (4.12)
at restriction 1 < 2, (X), k = 1, K. (4.13)

A-problem (4.12)-(4.13) has (N+1) dimension, as a consequence of the result of the solution of
A-problem (4.12)-(4.13) represents an optimum vector of X°eRN*1, (N + 1) which component an
essence of the value of the A%, i.e. X° = {x?, x9, ..., x3, X941}, thus x3,, = A°, and (N+1) a com-
ponent of a vector of X° selected in view of its specificity.
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The received a pair of {A°, X°} = X° characterizes the optimum solution of A-problem (4.12)-
(4.13) and according to vector problem of mathematical programming (3.1)-(3.4) with the equivalent
criteria, solved on the basis of normalization of criteria and the principle of the guaranteed result.
We will call in the optimum solution of X° = {A° X°}, X° - an optimal point, and A° - a maximum
level. An important result of the algorithm for solving vector problems (3.1)-(3.4) with equivalent
criteria is the following theorem.

Theorem 1. The theorem of the two contradictory criteria in the vector problem of mathemat-
ical programming with equivalent criteria.

In convex vector problems of mathematical programming (3.1)-(3.4) at the equivalent criteria
which is solved on the basis of normalization of criteria and the principle of the guaranteed result, in
an optimum point of X° = {A° X°} two criteria are always - denote their indexes ge K, p<K (which
in a sense are the most contradiction of the criteria k = 1, K), for which equality is carried out:

20 =2,X°) =1,(X°),q,pEKX €S, (4.14)
and other criteria are defined by inequalities:
A < M(X°),VEEK, q#p #+ k. (4.15)

For the first time, the proof of Theorem 1 is presented in [15, p. 22], and later it is repeated in
[9, p.234]. Along with the fact that the point X° is the optimal solution of the VPMP.

4.1.4. A constructive method for solving the vector optimization problem with equivalent cri-
teria.

To solve of the vector problems of mathematical programming (3.1)-(3.4) the methods based
on axiomatic of the normalization of criteria and the principle of the guaranteed result, which follow
from Axiom 1 and the principle of optimality 1. The constructive method for solving a vector opti-
mization problem with equivalent criteria includes two blocks: the 1st block "System Analysis™ is
divided into three steps; 2nd block "Optimal decision-making", which includes two steps: construc-
tion of the problem and its solution.

Block 1. System analysis.

Step 1. The problem (3.1)-(3.4) by each criterion separately is solved, i.e. for Vk € K is solved
at the maximum, and for Vk € K, is solved at a minimum. As a result of the decision, we will receive:
X - an optimum point by the corresponding criterion, k = 1,K; fii = f, (X;) — the criterion size kth
in this point, k = 1,K.

Step 2. We define the worst value of each criterion on S: 2, k = 1, K. For what the problem
(3.1)-(3.4) for each criterion of k = 1, K; on a minimum is solved:

2 =min f,(X),G(X)<B,X>0,k = 1,K,.

The problem (3.1)-(3.4) for each criterion k = 1, K, maximum is solved:

2 =max f,,(X),G(X)<B,X>0,k = 1,K,.

As a result of the decision, we will receive: X = {xj,j = 1,N} - an optimum point by the
corresponding criterion, k = 1,K;

2 = fi.(X?) —the criterion size kth a point, X2,k = 1, K.

Step 3. The system analysis of a set of points, optimum across Pareto, for this purpose in opti-
mum points of X* = {X;, k = 1,K}, are defined sizes of criterion functions of F(X") and relative

_ 20
estimates A(X"), A, (X) = % VkeK:
kK~ Jk

fr(X1), e fie(XD)

FX*) ={fiXx),q =1K k=1K}= : (4.16)
fr(Xi), oo fie (Kg)
A (X7, ooy A (XT)

MXT) = {Aq(Xi) g =LK k=1K} = : (4.17)
A (Xi), oees Aie (X)

Any relative score (4.17) lies within the range of 0 < A, (X) < 1,k = 1,K.
From the results of the system analysis (4.16)-(4.17) the problem arises: To find such an (optimal)
point at which all relative estimates are: 4,(X),q = 1, K were close to unity. To solve this problem
is aimed A-problem.
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Block 2. Making the optimal decision in the VPMP. It includes two steps - 4, 5.

Step 4. Creation of the A-problem.

Creation of A-problem is carried out in two stages:

initially built the maximine problem of optimization with the normalized criteria which at the
second stage will be transformed to the standard problem of mathematical programming called A-
problem.

For construction maximine a problem of optimization we use definition 2 - relative level:

vXeS A= minkeKAk(X).

The bottom A level is maximized on XeS, as a result we will receive a maximine problem of
optimization with the normalized criteria.

A% = maxyesming A, (X). (4.18)

At the second stage we will transform a problem (4.18) to a standard problem of mathematical

programming:

A° = maxyes A, — A° = maxyeg A, (4.19)
- _f0 .
A—M(X)<0k=TK — A —%so,k = K, (4.20)
k~Jk
G(X)<B,X>0, N G(X) <B,X 20, (4.21)

where the vector of unknown of X has dimensionof N + 1: X = {A, x4, ..., x5 }.

Step 5. Solution of A-problem.

A-problem (4.19)-( 4.21) is a standard problem of convex programming and for its decision
standard methods are used. As a result of the solution of A-problem it is received:

X° = {X°,A°} - an optimum point; (4.22)
f(X°),k = 1,K are values of the criteria in this point; (4.23)
— 0 —
A (X°) = % k = 1,K are sizes of relative estimates; (4.24)
k™ Ik

A° - the maximum relative estimates which is the maximum bottom level for all relative esti-
mates of A, (X?), or the guaranteed result in relative units. A° guarantees that all relative estimates
of X, (X?) more or are equal A°:

M (X9)22% k = 1,K or A°<0 (X°),k =1,K,X° € S, (4.25)
and according to the theorem 1 point of X° = {41°,x;, ..., x5} is optimum across Pareto.

4.2. Theory, axiomatics, the principle of optimality and methods for solving vector optimiza-
tion problems: with a Criterion Priority

Definition 3 states that if we compare two functions (criteria) measured in relative estimates Aj—, (X)
and A,—,(X) Vk € K, then three situations are possible. The second situation, when A;_;(X) = A, (X) is
investigated in Section 3.2 (equivalent criteria). Situations: the first, when A, _, (X) > A;-,(X), and the third,
when A—;1(X) < A=2(X), are explored in this section. Such situations are defined as tasks with the priority
of the criterion.

For development of methods of the solution of problems of vector optimization with a priority
of criterion we use definitions as follows:

Priority of one criterion of vector problems, with a criterion priority over other criteria;

Numerical expression of a priority;

The set priority of a criterion;

the lower (minimum) level from all criteria with a priority of one of them; a subset of points
with priority by criterion (Axiom 2); the principle of optimality of the solution of problems of vector
optimization with the set priority of one of the criteria, and related theorems. For more details see
[17, 43, 44].

4.2.1. Axiomatics of solving a Vector Optimization Problem with a given criterion priority

The language of the axiomatics system for solving a vector problem with a given criterion
priority includes definitions: 1) Priority of one criterion over another; 2) The numerical value of the
priority of the criterion; 3) The lowest level of the criterion among all relative evaluations with the
priority of the criterion.

Definition 6. About the priority of one criterion over the other.
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The criterion of g € K in the vector problem of Equations (3.1)-(3.4) in a point of X € S has
priority over other criteria of k = 1, K, and the relative estimate of Aq(X) by this criterion is greater
than or equal to relative estimates of Ak(X) of other criteria, i.e.:

A (X) =N (X), k =1K, (4.26)

and a strict priority for at least one criterion of t € K,

Aq(X) > A (X), t # q, and for other criteria of A,(X) = A, (X), k = LK k+t+q. (4.27)

Introduction of the definition of a priority of criterion qeK in the vector problem of Equations
(3.1)-(3.4) executed the redefinition of the early concept of a priority. Earlier the intuitive concept of
the importance of this criterion was outlined, now this "importance” is defined as a mathematical
concept: the higher the relative estimate of the gth criterion compared to others, the more it is im-
portant (i.e., more priority), and the highest priority at a point of an optimum is X, Vq € K.

From the definition of a priority of criterion of g € K in the vector problem of Equations (3.1)-
(3.4), it follows that it is possible to reveal a set of points S, § that is characterized by

Ag(X) = A (X),Vk #q,VX € §,. However, the answer to whether a criterion of g € K at a
point of the set S, has more priority than others do remains open. For clarification of this question,
we define a communication coefficient between a couple of relative estimates of g and k that, in total,
represent a vector:

PIX)={pl(X)|[k=1K}LqeKVXeS,. (4.28)

Definition 7. About numerical expression of a priority of one criterion over another.

In the vector problem of Equations (3.1) and (3.4), with priority of the qgth criterion over other
criteria of k = 1,K, for VX e S, and a vector of P9(X) which shows how many times a relative
estimate of A,(X), q € K, is more than other relative estimates of A, (X), k = 1, K, we define a nu-
merical expression of the priority of the qth criterion over other criteria of k = 1, K as:

PA(X) = {pl(X) = Qig; k=T K}Lpl(X)>1,VX € S,cS,k=TK VqgeK.  (4.29)

A . . .. .
%. let us call the numerical expression of the priority of the g-th crite-
k

rion over the rest of the criteria k = 1, K.

Definition 7a. On a given numerical expression of the priority of one criterion over.

In the vector problem of Equations (3.1)—(3.4) with a priority of criterionof g € K for VX € S,
vector P9 = {p,‘j,k = 1,K} is considered to be set by the person making decisions (i.e., decision-
maker) if everyone is set a component of this vector. Set by the decision-maker, component p;!, from
the point of view of the decision-maker, shows how many times a relative estimate of A,(X),q € K
is greater than other relative estimates of A, (X), k = 1, K. The vector of p/, k = 1, K, is the numerical
expression of the priority of the qth criterion over other criteria of k = 1,K:

PI(X) = {pf(X),k =LK} pl(X)=21,VX e S,c S,k =1,K,Vq € K. (4.30)

The vector problem of Equations (3.1)—(3.4), in which the priority of any criteria is set, is called
a vector problem with the set priority of criterion. The problem of a task of a vector of priorities arises
when it is necessary to determine the point X° € S by the set vector of priorities.

In the comparison of relative estimates with a priority of criterion of g € K, as well as in a task with
equivalent criteria, we define the additional numerical characteristic of A which we call the level.

Definition 8. About the lower level among all relative estimates with a criterion priority.

The X level is the lowest among all relative estimates with a priority of criterion of g € K such

Such a ratio p{ (X) =

that:
A<pin(X), k=1K, q€K, VX €S, CS; (4.31)
The lower level for the performance of the condition in Equation (4.31) is defined as:
A = mingexpiA(X),q EK,VX € S, S. (4.32)

Equations (4.31) and (4.32) are interconnected and serve as a further transition from the opera-
tion of the definition of the minimum to restrictions, and vice versa. In Section 4, we gave the defini-
tion of a Pareto optimal point X° € S with equivalent criteria. Considering this definition as an initial
one, we will construct a number of the axioms dividing an admissible set of S into, first, a subset of
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Pareto optimal points S°, and, secondly, a subset of points §,c S, q € K, with priority for the gth
criterion.

4.2.2. Axiomatics of Criteria Priority in the Vector Optimization Problem.

Axiom 2. On a subset of points prioritized by criterion in a vector optimization problem.

In the vector problems of mathematical programming of Equations (3.1)—(3.4), the subset of
points S, § is called the area of priority of criterion of g € K over other criteria, if

VX €S, VkeK A, (X)X (X),q #k.

This definition extends to a set of Pareto optimal points $° that is given by the following defi-
nition.

Axiom 2a. About a subset of points, priority by criterion, on Pareto’s great number in a vector
problem.

In a vector problem of mathematical programming the subset of points Sg=$°< S is called the
area of a priority of criterion of g € K over other criteria, if

VX e Sg Vk e KA (X)) (X), q#k.

In the following we provide explanations.

Axiom 2 and 2a allow the breaking of the vector problems of mathematical programming in
Equations (3.1)—(3.4) into an admissible set of points S, including a subset of Pareto optimal points,
$°c §, and subsets:

One subset of points $'c S where criteria are equivalent, and a subset of points of S* crossed
with a subset of points S°, allocated to a subset of Pareto optimal points at equivalent criteria
§°° = §' n §°. As will be shown further, this consists of one point of X° € S, i.e.

X% =5§% =5§"nS°SeS,S°CS; (4.33)
"K" subsets of points where each criterion of g = 1, K has a priority over other criteria of k =
1,K,q # k, and thus breaks, first, sets of all admissible points S, into subsets §,°8,q= 1,K and,

second, a set of Pareto optimal points, S°, into subsets S3=S,< S, q = 1, K. This yields:
S'U(Ugex S9) = $°,85cS°<S,q =1K. (4.34)
We note that the subset of points $2, on the one hand, is included in the area (a subset of points)
of priority of criterion of g € K over other criteria: §g S, — S, and, on the other, in a subset of
Pareto optimal pointsSg —S°c S.

Axiom 2 and the numerical expression of priority of criterion (Definition 5) allow the identifi-
cation of each admissible point of X € S (by means of vector:

PI(X) = {pi(X) = i"gi ,k = 1,K}, to form and choose: (4.35)
k

a subset of points by priority criterion Sq, which is included in a set of points S, Vq € K
XeS§,c S, (such a subset of points can be used in problems of clustering, but is beyond this article);

a subset of points by priority criterion $2, which is included in a set of Pareto optimal points
Se, quK,XeSZCS°.

Thus, full identification of all points in the vector problem of Equations (3.1)—(3.4) is executed
in sequence as:

Set of ad- . Subs_et of i Subs_et of Separate point
missible points of points, optimum points, optimum of a VXeS
Ye§ across Pareto, across Pareto Ye§0 SO §
€= Xe S°cS—> Xe§9cS’cS— q

This is the most important result which allows the output of the principle of optimality and to
construct methods of a choice of any point of Pareto's great number.

4.2.3. Principle of optimality 2. The solution of a vector problem with the set criterion priority
in the VPMP

Definition 9. Principle of optimality 2. The solution of a vector problem with the set criterion
priority in the VPMP.

The vector problem of Equations (3.1)—(3.4) with the set priority of the gth criterion of

p,??xk (X),k = 1,K is considered solved if the point X° and maximum level A° among all rela-
tive estimates is found such that:
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A% = maxy.smingxp A (X),q € K. (4.36)

Using the interrelation of Equations (4.31) and (4.32), we can transform the maximine problem
of Equation (4.36) into an extreme problem of the form:

A° = maxyes \, (4.37)
at restriction L <p/A(X), k = 1,K. (4.38)

We call Equations (4.37) and (4.38) the A-problem with a priority of the gth criterion.

The solution of the A-problem is the point X° = {X°,1°}. This is also the result of the solution
of the vector problem of Equations (3.1)-(3.4) with the set priority of the criterion, solved on the basis
of normalization of criteria and the principle of the guaranteed result.

In the optimum solution X° = {X°,A°}, X°, an optimum point, and A°, the maximum bottom
level, the point of X° and the A° level correspond to restrictions of Equation (5.8), which can be
written as: A°<p/A,(X°), k = 1,K.

These restrictions are the basis of an assessment of the correctness of the results of a decision
in practical vector problems of optimization.

From Definitions 1 and 2, "Principles of optimality", follows the opportunity to formulate the
concept of the operation “opt”.

Definition 9. Mathematical operation "opt™ in the VPMP.

In the vector problems of mathematical programming of Equations (3.1)—(3.4), in which "max"
and "min" are part of the criteria, the mathematical operation "opt" consists of the definition of a point
X° and the maximum A° bottom level to which all criteria measured in relative units are lifted:

Ao <A (X°) = L TR, (4.39)
Je=fx
i.e., all criteria of A,(X°),k = 1, K, are equal to or greater than the maximum level of 1° (therefore
A° is also called the guaranteed result).

Theorem 2. The theorem of the most inconsistent criteria in a vector problem with the set
priority. If in the convex vector problem of mathematical programming of Equations (3.1)—(3.4) the
priority of the gth criterion of p,‘j, k = 1,K,Vq < K over other criteria is set, at a point of an optimum
X° € S obtained on the basis of normalization of criteria and the principle of guaranteed result, there
will always be two criteria with the indexes r € K, t € K, for which the following strict equality
holds:

A = pEA.(X°) = pE A (X°),1,t, € K, (4.40)
and other criteria are defined by inequalities:
A<pl(X),k=1KVqeKq=r=t. (4.41)

Criteria with the indexes r € K, t € K for which the equality of Equation (4.40) holds are
called the most inconsistent.

Proof. Similar to Theorem 2 [19, 20].

We note that in Equations (4.40) and (4.41), the indexes of criteria r, t € K can coincide with
the g € K index.

Consequence of Theorem 1, about equality of an optimum level and relative estimates in a vec-
tor problem with two criteria with a priority of one of them.

In a convex vector problem of mathematical programming with two equivalent criteria, solved
on the basis of normalization of criteria and the principle of the guaranteed result, at an optimum
point X° equality is always carried out at a priority of the first criterion over the second:

A% =21 (X°) = pl(X)A,(X°),X° €S, (4.42)
where p3(X°) = A, (X°)/A,(X°), and at a priority of the second criterion over the first:
A% = A, (X°) = p2(X°)A(X°), X° € S,
where pf (X°) = 1,(X) /A, (X°).

4.2.4. Mathematical Method of the Solution of a Vector Problem with Criterion Priority.

Step 1. We solve a vector problem with equivalent criteria. The algorithm of the decision is
presented in Section 4.1.4.

As a result of the decision, we obtain:
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optimum points by each criterion separately X,k = 1,K and sizes of criterion functions in
these points of f = f,(X3), k = 1,K, which represent the boundary of a set of Pareto optimal
points;

anti-optimum points by each criterion of X = {xj,] = 1, N} and the worst unchangeable part
of each criterion of £} = f, (X@),k = 1,K;

X° = {X°, 2°}, an optimum point, as a result of the solution of VPMP at equivalent criteria,
i.e., the result of the solution of a maximine problem and the A-problem constructed on its basis;

A°, the maximum relative assessment which is the maximum lower level for all relative esti-
mates of Ak(X®), or the guaranteed result in relative units, A° guarantees that all relative estimates of
Ak(X°) are equal to or greater than A°:

<X, k=1,K,X°€S. (4.43)

The person making the decision carries out the analysis of the results of the solution of the
vector problem with equivalent criteria.

If the received results satisfy the decision maker, then the process concludes, otherwise subse-
quent calculations are performed.

In addition, we calculate:

in each point X,k = 1,K we determine sizes of all criteria of: ¢ = 1,

{f(Xi),q = 1,K}, k=1,K, and relative estimates

WX = QXD q = LK k = T,K}, A (X) _f’}(X)f{k,Vk e K:
fl(Xl) fK(Xl)

Mg (X o M (XD
A o feX2)

F(X") = , AMXT) = (4.44)

Nerypaweo|

Matrices of criteria of F(X”) and relative estimates of A(X") show the sizes of each criterion of
k = 1, K upon transition from one optimum point X;, ke K to another Xg,q€K, i.e., on the border of
a great number of Pareto.
at an optimum point at equivalent criteria X° we calculate sizes of criteria and relative estimates:
fk(Xo)' k= 1,_K, xk()(o)' k = L_K, (445)
which satisfy the inequality of Equation (4.43). In other points XeS°, in relative units the criteria of
A = mingg), (X) are always less than A°, given the A-problem of Equations (4.37)-(4.38). This
information is also a basis for further study of the structure of a great number of Pareto.
Step 2. Choice of priority criterion of g € K.
From theory (see Theorem 1) it is known that at an optimum point X° there are always two most
inconsistent criteria, ¢ € K and v € K, for which in relative units an exact equality holds:
A% =2,(X°) =2A,(X°),q,v € K,Xe S. Others are subject to inequalities:
A° < M(X°),VkEK, q#v +k.
As a rule, the criterion which the decision-maker would like to improve is part of this couple,
and such a criterion is called a priority criterion, which we designate g € K.
Step 3. Numerical limits of the change of the size of a priority of criterion g € K are defined.
For priority criterion g € K from the matrix of Equation (4.44) we define the numerical limits
of the change of the size of criterion:
in physical units of £, (X°)< f, (X) < f5(Xg), keK, (4.46)
where f,(X;) derives from the matrix of Equation F(X") (4.44), all criteria showing sizes measured
in physical units, f,,(X°), k = 1, K from Equation (4.45), and,
in relative units of 2, (X°)<1,(X) <14(X3), k€K, (4.47)
where 1, (X;)derives from the matrix A(X™), all criteria showing sizes measured in relative units (we
note that A,(Xy) = 1),1,(X°) from Equation (4.44).
As arule, Equations (4.46) and (4.47) are given for the display of the analysis.
Step 4. Choice of the size of priority criterion (decision-making).
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The person making the decision carries out the analysis of the results of calculations of Equation
5.14) and from the inequality of Equation (4.46) chooses the numerical size fq of the criterion of g €
K:

foXO)<fy <f(X3).q € K. (4.48)

For the chosen size of the criterion of fq it is necessary to define a vector of unknown X°°. For
this purpose, we carry out the subsequent calculations.

Step 5. Calculation of a relative assessment.

For the chosen size of the priority criterion of fq the relative assessment is calculated as:

A = fq_ff?
TG
which upon transition from point X° to X, according to Equation (4.44), lies in the limits:
Ag(X°?) =2 =N (Xp) =1

Step 6. Calculation of the coefficient of linear approximation.

Assuming a linear nature of the change of criterion of fq(X) in Equation (4.49) and according to
the relative assessment of A,(X), using standard methods of linear approximation we calculate the
proportionality coefficient betweeni, (X°), A4, which we call p:

— ). &4
p = %, q EK.

Step 7. Calculation of coordinates of priority criterion with the size f;.

In accordance with Equation (4.48.4), the coordinates of the X, priority criterion point lie within
the following limits: X° <X, <Xy, q € K. Assuming a linear nature of change of the vector

Xq = {x{, ..., x1} we determine coordinates of a point of priority criterion with the size fq with
the relative assessment of Equation (4.45):

Xq = {x] =x0 + p(xg(1) —x7), ...,
xy = x§ + p(xg(N) — xR)3, (4.50)

where X° = {x?, ..., xg}, Xg = {x7(1), ..., x5 (N)}.

Step 8. Calculation of the main indicators of a point Xq (5.20).

For the obtained point xq, we calculate:

all criteria in physical units: F4 = {f,(x9),k = 1,K};

all relative estimates of criteria:

(4.49)

- _£0
29 = (2% k = T,K}, A (x9) = %,k - 1K (4.51)
k™ Jk
q —
the vector of priorities: P4 = {p} = 2q0) G 1,K};

A(xD)’

the maximum relative assessment: 2°¢ = min (py A, (x%),k = 1,K).

Any (5.21) point from Pareto's set X7 = {A¢, X’} e §° can be similarly calculated.

Analysis of results. The calculated size of criterion f,(X?),q € K is usually not equal to the
set fq. The error of the choice of Af, = |f,(X?) — f,| is defined by the error of linear approximation.
The results of the study of symmetry in VPMP with a given priority are similar as for VPMP with
equivalent criteria, but the center of symmetry is shifted towards the priority criterion.

Conclusion on the theory and axiomatics of vector optimization.

The presented theory, axiomatics, principles of optimality are a further development of the ax-
iomatic approach laid down in the famous work "Elements” by the ancient Greek scientist Euclid,
who presented axioms for one-dimensional mathematics. This is reflected in the theory of optimiza-
tion with one criterion. Axiomatics (Mashunin Yu.K.), set forth in the work, is aimed at a systematic
(with many criteria) study of objects, processes of engineering systems.

5. Software and Methodology for Modeling and Making an Optimal Decision on the Se-
lection of Parameters of Complex Engineering Systems

5.1. Software for modeling complex engineering systems based on the theory and methods of
vector optimization

Mathematical models of the structure of the material (2.4) - (2.8), (2.22)-(2.27) and the engi-
neering systems are built in the form of a vector problem of nonlinear programming (VPNP). We will
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present software for modeling engineering systems based on the theory and methods of solving vector
optimization problems, [46].

5.1.1. Software development of the VPNP solution

The software for solving the vector problem of nonlinear programming (3.1) -(3.4), on the basis
of which models of engineering systems are formed, is implemented on the basis of the algorithm for
solving the VPNP, described in the previous sections. In solving the VPNP for each criterion, the
FMINCON program (...) in the MATLAB system was used.

When using the FMINCON(...) program, it is necessary to develop two subroutines — functions.
The first function includes two blocks: the first block is designed to evaluate at point X the criterion

f1.(X) Vk €K; the second block to calculate the first derivative at this point %}EX) vk €K. The second

function includes the same two blocks for constraints only. The FMINCON program (...) is used in
the first step of the algorithm (maximizing the criteria) and in the second step of the algorithm (min-
imization). Similarly, according to the algorithm, step 4 and 5 are solved A-problem.

In general, with nonlinear constraints, the software for solving the VPNP includes

K*2 (1 step) + K*2 (2 step) + 2 (A-problem) functions. Since the criteria and limitations of the
VPNP are individual, individual software is written for each VPNP. To solve the VPNP (3.1) - (3.4)
below is a program that essentially represents a program - a template for writing and solving other
vector problems of nonlinear programming (3.1) - (3.4) - mathematical models of engineering sys-
tems.

5.1.2. Numerical implementation of a vector problem of nonlinear programming

Example 4.1.

Itis given. The consideration of the vector nonlinear (convex) programming problem with four
homogeneous criteria. In terms of criteria, we use a circle, and with the linear restrictions the problem
is therefore solved orally and imposed on variables.

opt F(X) = {min F,(X) = {min f;(X)=(x; — 80)? + (x, — 80)2, (5.1)
min f,(X)=(x; — 80)% + (x, — 20)?, (5.2)

min f3(X)=(x; — 20)% + (x, — 20)?, (5.3)

min f,(X)=(x; — 20)? + (x, — 80)?}, (5.4)

at restrictions 0 <x,; <100, 0 <x, <100. (5.5)

Need to be determined. Develop software in MATLAB solutions vector problem nonlinear
programming. Using software solve the problem (5.1)-(5.5).

5.1.3. Software for solving the vector problem of nonlinear programming (VPNP)

To solve the vector problem of nonlinear programming (5.1) - (5.5) - a model of an engineering
system, a program has been developed in the MATLAB system, which implements an algorithm for
solving VPNP with equivalent criteria. The following is the result of the VPNP (5.1) to (5.5) decision
obtained by the program.

Recording the program in MATLAB format

% IporpamMma "PemeHre BEKTOPHOM 3alauM HEJMHEMHOTO NpoTpaMMupoBaHma":
function [x,f] = VPNP 2 4Krit 100 (x)
ABTop: MamynmH Opunm KoHcTaHTMHOBMY (Mashunun Yu. K.)
AJITOPUTM M IIpoTpaMMa IpelHasHaueHa OJI MCIIOJIb30BaHMA B 00pPa30BaHUM UM HAYUHBIX
NCCJIENOBAHUAX, IJIS KOMMEPUECKOT'O MCIOJIB30BaHMA ofOpamaTbcs: Mashunin@mail.ru
Algorithm VPNP: 4Kritery + L-zadaha
[X,Fval,EXITFLAG, OUTPUT, LAMBDA, GRAD, HESSIAN] =

FMINCON (FUN, X0, A,b, Aeqg,beq, 1lb,ub,nonlcon, op-

o° o° o° o o°

o°

tions, P1l,P2,...)
disp ('*** Bjiok JVMCXOIHBIX IOAaHHBIX. B3HII:***")

disp ('opt F(X)={max F1(X)={min fl=(x1-80)."2+ (x2-80).72; ')
disp (" min £2=(x1-80) .72+ (x2-20).72; ')
disp (" min £3=(x1-20) .72+ (x2-20).%2; ")
disp (" min fd4=(x1-20) .72+ (x2-80).72; ')
disp (" 0<=x1<=100, 0<=x2<=100 ')
1b=[0. 0.];

ub=[100. 100.]; Xo=[0. 0.];

options=optimset ('LargeScale', 'off');
options=optimset (options, 'GradObij', 'on', 'GradConst', 'off"');
A=[1 0O;
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0 17;
b=[100 100];
Aeg=[]; beg=I];
XoKlmax=[0. 0.];
disp ('*** Ilar 1. PemeHre IO KaXIOMy KPUTEPMI (Hamjydmee) ***')%
xlmax, flmax]= fmincon ('VPNP 2 Kritlmax', XoKlmax,A,b,Aeq,beq,1lb,ub,'',options)

flXImax] = VPNP 2 Kritlmin (xlmax)
f2XImax] = VPNP 2 Krit2min (xlmax)
f3XImax] = VPNP 2 Krit3min (xlmax)
f4XImax] = VPNP 2 Krit4min (xlmax)

[

[

[

[

[

XoK2max=[0. 0.];

[x2max, f2max]= fmincon ('VPNP 2 KritZmax',6 XoK2Zmax,A,b,Aeq,beq,lb,ub,'',options)
[f1X2max] = VPNP_ 2 Kritlmin (x2max)

[f2X2max] = VPNP_ 2 Krit2min (x2max)

[£3X2max] VPNP 2 Krit3min (x2max)

[f4X2max] VPNP 2 Kritdmin (x2max)

XoK3max=[0. 0.];
[
[
[
[
[
X
[
[
[
[

x3max, £3max]= fmincon ('VPNP 2 Krit3max', XoK3max,A,b,Aeq,beq,lb,ub,'',options)
f1X3max] = VPNP 2 Kritlmin (x3max)

f2X3max] VPNP 2 Krit2min (x3max)

f3X3max] = VPNP 2 Krit3min (x3max)

f4X3max] = VPNP 2 Krit4min (x3max)

oK4max=[0. 0.];

x4max, f4max]= fmincon ('VPNP 2 Kritdmax', XoK4max,A,b,Aeq,beq,lb,ub,'',options)
flX4max] = VPNP 2 Kritlmin (x4max)

f2X4max] = VPNP 2 KritZ2min (x4max)
f3X4max] = VPNP 2 Krit3min (x4max)
[f4X4max] = VPNP_ 2 Kritdmin (x4max)

disp ('*** llar 2. PemeHMe IO KaXIOMy KPUTEPMI (HauMxynmee) ***')%
XoKlmin=[0. 0.1];
x1lmin, flmin]= fmincon ('VPNP 2 Kritlmin',XoKlmin,A,b,Aeq,beqg,lb,ub,'',options)

[

[f1XImin] = VPNP_2 Kritlmin (xlmin)

[f2XImin] = VPNP 2 Krit2min (xlmin)

[£3XImin] = VPNP_ 2 Krit3min (xlmin)

[f4XImin] = VPNP 2 Krit4min (xlmin)

[x2min, f2min] = fmincon ('VPNP 2 KritZmin',Xo,A,b,Aeq,beq,lb,ub,'',options)
[f1X2min] = VPNP_2 Kritlmin (x2min)

[f2X2min] = VPNP_ 2 Krit2min (x2min)

[£3X2min] = VPNP_ 2 Krit3min (x2min)

[f4X2min] = VPNP 2 Krit4dmin (x2min)

[x3min, £3min] = fmincon ('VPNP 2 Krit3min',Xo,A,b,Aeq,beq,lb,ub,'',options)
[f1X3min] = VPNP_2 Kritlmin (x3min)

[£2X3min] = VPNP_ 2 Krit2min (x3min)

[£3X3min] = VPNP_ 2 Krit3min (x3min)

[f4X3min] = VPNP 2 Krit4min (x3min)

[x4min, f4min] = fmincon ('VPNP 2 Kritdmin',Xo,A,b,Aeq,beq,lb,ub,'',options)
[f1X4min] = VPNP_ 2 Kritlmin (x4min)

[f2X4min] = VPNP_ 2 Krit2min (x4min)

[£3X4min] = VPNP_ 2 Krit3min (x4min)

[f4X4min] = VPNP 2 Krit4min (x4min)

Q

disp('*** Ilar 3. CHUCTEMHBM aHalM3 PEe3yJILTaTOB ***')%
disp ('OueHka KPUTEPMEBR B TOoUKax ONTmMyMa: Xlmin,X2min,X3min,X4min')$%
F=[fl1X1Imin f2X1min £3X1lmin f4Xlmin;
f1X2min £2X2min £3X2min f4X2min;
f1X3min £2X3min £3X3min f4X3min;
f1X4dmin f2X4min f£3X4min f4X4min]
dl=f1XImin-fl1X1lmax
d2=£f2X2min-f2X2max
d3=£3X3min-f3X3max
d4=f4X4min-f4X4max
disp ('OLueHKka KPUTEPMEBR B OTHOCUTEJILHEIX eIMHMiax: X1lmin,X2min,X3min,X4min')$%
L=[ (f1X1lmin-flX1lmax) /dl (£2X1min-f2X2max) /d2 (£3X1min-£3X3max) /d3 (£4X1min-
f4X4max) /d4;
(f1X2min-flXlmax) /dl (£2X2min-f2X2max) /d2 (£3X2min-f3X3max) /d3 (£f4X2min-
f4X4max) /d4;
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(f1X3min-flXlmax) /dl (£2X3min-f2X2max) /d2 (£3X3min-f3X3max) /d3 (£4X3min-
f4X4max) /d4;

(f1X4min-flXlmax) /dl (£2X4min-£f2X2max) /d2 (£3X4min-£3X3max) /d3 (f4X4min-
f4X4max) /d4]
disp ('*** Ilar 4. llocTpoeHre L-zamaum ***')%

Ao=[1 0 O;

01 0];
bo=[100 100]; RAeg=[]; beg=I[];
Xoo=[0 0 0]

1lbo=[0. 0. 0.]

ubo=[100. 100. 1]

disp('*** Ilar 5. Pemenme L-3amaum ***')%

[Xo,Lo]=fmincon ('VPNP 2 L', Xoo,Ao0,bo,Aeq,beq, lbo,ubo, 'VPNP_ 2 LConst') %,options)
disp ('OueHka KpUTEepMeB B TOouke OnNTuMMyMa Xo')$

[f1Xo] = VPNP 2 Kritlmin(Xo(1:2))
[f2Xo] = VPNP_2 Krit2min (Xo(1:2))
[£3Xo] = VPNP 2 Krit3min(Xo(1l:2))
[f4Xo] = VPNP 2 Krit4min(Xo(1:2))

disp ('OueHKa KpUTEpMeB B TOUYKe ONTMMyMa XO B OTHOCUTEJIbHHX eIVHMIAxXx')$
L1Xo=(flXo+flmax) /dl
L2Xo=(f2Xo+f2max) /d2
L3Xo=(f3Xo+f3max) /d3
L4Xo=(f4Xo+fdmax) /d4

% ****KOH@H*********

% [[lporpamma "Pacuer 1 kpuTep. - max"] ¢amn: VPNP 2 Kritlmax
function [£f,G] = VPNP_ 2 Kritlmax (x)

f=-(x(1)-80).7"2-(x(2)-80) ."2; $PacueT OQyHKUMM — KpuTepum 1

G=[-2*(x(1)-80), -2*(x(2)-80)];%Pacuer 1 OpoM3BOOHOM KpuTepus 1

% [Ilporpamma "Pacuer 1 xpurep. - min"] ®ann: VPNP_2 Kritlmin
function [f,G] = VPNP 2 Kritlmin(x);

f=(x(1)-80) .72+ (x(2)-80) ."2;
G=[2*(x(1)-80); 2*(x(2)-80) 17

% [lporpamma "PacueT 2 kpuTep. - max"] ®amn: VPNP 2 KritZmax
function [f,G] = VPNP 2 KritZmax(x);

f=-(x(1)-80) .%2-(x(2)-20) .72;

G=[-2*(x(1)-80); -2*(x(2)-20)1;

% [lporpamma "PacueT kpuTep. 2 - min"] darn: VPNP 2 Krit2min

function [£f,G] =VPNP_2 Krit2min (x);
f=(x(1)-80) .72+ (x(2)=-20) ."2;
G=[2*(x(1)-80); 2*(x(2)-20)1;

% [llporpamma "Pacuer 3 kpurTep. - max"] ®amn: VPNP 2 Krit3max
function [£,G] = VPNP 2 Krit3max(x);

f=-(x(1)-20) .72-(x(2)-20) ."2;

G=[-2*(x(1)-20); —2*(x(2)-20)1;

% [Ilporpamma "Pacuer 3 kpuTep. - min"] ®ann: VPNP 2 Krit3min
function [f£,G] = VPNP 2 Krit3min(x);

f=(x(1)-20) .72+ (x(2)=-20) .72;

G=[2*(x(1)-20); 2*(x(2)-20)1;

% [llporpamma "Pacuer 4 kpuTep. - max"] Qann:VPNP 2 Kritdmax

function [£f,G] = VPNP_2 Krit4max(x);

f=-(x(1)-20) .%2-(x(2)-80) .72;

G=[-2*(x(1)-20); -2*(x(2)-80)1;

% [llporpamma "Pacuer 4 kpuTep. - max"] Qann:VPNP 2 Kritdmax

function [f,G] = VPNP 2 Kritdmax(x);

f=-(x(1)-20) .%2-(x(2)-80) .72;

G=[-2*(x(1)-20); -2*(x(2)-80)1;

% [[lporpamma "PacueT kputep. L-3amaum"] odarn: VPNP 2 L

function [f,G] = VPNP 2 L (x)

f=-x(3);

G=1[0; 0, -11;

% [Mporpamma "PacueT orpaHmueHurt L-szamaum"] ¢anm: VPNP 1 LConst

function [c,ceq,DC,DCeg]= VPNP 2 LConst (x)
d1=12800;d2=12800;d3=12800;d4=12800;

f1X1Imax=12800; £2X2max=12800; £3X3max=12800; £4X4max=12800;
c(1)=((x(1)-80) .72+ (x(2)-80).72)/dl+x(3) -f1XIlmax/dl;
c(2)=((x(1)-80) .72+ (x(2)-20) .72)/d2+x(3) -f2X2max/d2;
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c(3)=((x(1)-20) .72+ (x(2)-20) ."2) /d3+x (3) ~£3X3max/d3;
c(4)=((x(1)-20) .72+ (x(2)-80) .72) /d4+x (3) -f4X4max/d4;
Gl=[2*(x(1)-80)/dl, 2*(x(1)-80)/d2, 2*(x(1)-20)/d3, 2*(x(1)-20)/d4;
2*(x(2)-80)/dl, 2*(x(2)-20)/d2, 2*(x(2)-20)/d3, 2*(x(2)-80)/d4;
1.0, 1.0, 1.0, 1.01;

cegq=[]; DCeg=[];

% *****KOH@H*****

% *****KOHCH*****

5.1.4. Solving the vector problem of nonlinear programming (5.1) - (5.5)

The above program is used to solve the VPNP (5.1) to (5.5). The solution is presented as a
sequence of steps.

Step 1. The vector problem (5.1) — (5.5) on max for each criterion is solved separately. Results
of the decision of the VPMP (5.1) to (5.5) for each criterion:

Criterion 1: X7 = {x; = 0,x, = 0}, f; = f1(X]) = —12800; (5.6)

Criterion 2.X; = {x; = 0,x, = 100}, f; = f,(X;) = —12800;

Criterion 3: X3 = {x; = 100,x, = 100}, 5 = f5(X3) = —12800:

Criterion 4: X; = {x; = 100,x, = 0}, f;/ = f,(X;) = —12800.

Step 2. The vector problem (5.1) - (5.5) on min for each criterion is solved separately. Results
of the decision of the VPMP (5.1) to (5.5) for each criterion:

Criterion 1: X = {x; = 80,x, = 80}, f° = (X)) = 0; (5.7)

Criterion 2. X3 = {x; = 80,x, = 20}, = f,(X3) = 0;

Criterion 3: X9 = {x; = 20,x, = 20}, /2 = f(XJ) = 0:

Criterion 4: X2 = {x; = 20,x, = 80}, f2 = f,(X2) = 0.

The results of the decision VPMP (5.1) to (5.5) in each criterion in the field of restrictions (5.6)
are presented in Fig. 5.1 at salient points.

x2<100 *x3apava 4 KpUTepua IR
100 = : : ; X ‘
I
90 I
I
80| * X4min I +X1min
I
70 4=(x1-20)%+(x2-80)? } 1=(x1-80)%+(x2-80)?
60F  M=M.A2,A3 } AM>A2,A3,04
|
¥ B ———————————— R x12
I
40 - 3=(x1-20)%+(x2-20)? | 2=(x1-80)%+(x2-20)?
I
30+ A3>M1,A2,0M4 | A2>\1,A3,)4
I
20 +X3min | *X2min
I o
L | 1<
10 ‘ v
0 . . . . | s s . x
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Figure 5.1. Limitations of VPNP (5.1) - (5.5), optimum points X, =
{X1min, X2min, X3min, X4min} and relative estimates A, (X),k = 1,K,K =4

The Pareto set lies between optimum points X7 X;X3 X}, i.e., the area of admissible points of S
formed by restrictions (5.5) coincides with a point set, which is Pareto-optimal S°, S°=S.

Step 3. A system analysis of the set of Pareto points is performed. At the optimum points
X* = {X;, k = 1,K}, the values of the target functions F(X") and the relative values A(X") are deter-
mined:

FX) = {f;(),a = LK}k =1K},

X)) = (A (X0), g = LK} k =1,K},

In the MATLAB system, at the optimum points: X;, = {X1min, X2min, X3min, X4min}, the
calculation of these functions will be as follows (System Analysis Result):
XD (X7) f3(X1) fu(XD)| |0 36007200 3600
f(X3) f2(X3) f3(X2) fa(X3)| _ (3600 0 3600 7200

PO =15 () £,03) £,(63) £,(x3)| ™ [7200 3600 0 3600
XD XD () (X! 136007200 36000
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A (X7) 2(X1) A3(X1) 24 (X1)]  11.0 0.7188 0.4375 0.7188
1 (X3) 2,(X3) 25(X3) A4(X3)| _ 10.7188 1.0 0.7188 0.4375
A1 (X3) A,(X3) A3(X3) 2,(X)| ~ 0.43750.7188 1.0 0.7188 |
(XD A, (X)) A(XD) 2,(xHl 107188 0.4375 0.7188 1.0

At points of an optimum of Xz, k = 1, Kall relative estimates (the normalized criteria) are
equal to the unit:

he(Xp) = LODSE _ g ) - TR K =4

fe—fx

At points of an optimum of X, k = 1, K (anti optimum), all relative estimates are equal to
zZero:

Me(XQ) = LD o ) = TR K = 4.

T Tk

From here, Vk € K,VXeS, 0<A, (X)<1.

Step 4. Builds A-problem.

Step 5. Solution A-problem. Results of the solution A-problems:

Xo0=X° = {x; = 50.0,x, = 50.0,x3; = 0.8594} — the optimum point where x3=A°;

X4, X, corresponds to the x4, x, problem (5.1) to (5.5);

Lo =A°=0.8594 represents the optimal value of the objective function. The functions
AL (X)), A,(X), A3(X), A4 (X), as well as the optimum points X° and A°, which are obtained at their
intersection, in the three-dimensional coordinate system x4, x,, A are shown in Figure 5.2.

AX*) =

A 3apava
i A(X4min)
3 A3(X3min) ;
e \o A1(X1min)
A2(X2min) ¢
o 064
3
£ P l
@ 04|

100

Figure 5.2. The results of the solution to VPMP: A, (X), A, (X), A3(X), A,(X);
The optimum points X°; the relative estimates 1°

In Fig. 5.1, 5.2 shows that the region (set of points) bounded by points:

Sq = {Xi = X15ptX12X°X41} is characterized by the fact that 1, (X)>A, (X), k = 2,4, XeS$;,
(Figure 4.1 shows how A1>A2, 1.3, A4, i.e. the area of §,_, is preceded by the first criterion. In this
area, the priority of the first criterion over the others is always greater than one:

PE(X) = M (X)/Ae(X)21, VXS5

Similarly, the areas (sets of points) given priority by the corresponding criterion are shown,
together they give a set of points optimal according to Pareto, $¢, and it (for this example) is equal to
the set of allowable points: $° = §§ U S5 U S U ST UX? =S.

If we solve the problem (5.1) - (5.5) with two criteria, for example, third and fourth, the set of
Pareto-optimal points lies on the segment X; X, and the X°° point determines the result of the solu-
tion. A°° is the maximum level, and A°° = A3(X°°) = A,(X°°) = 0.7917 according to theorem 1.
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The Pareto set lies between the points of the optimumXj X; XX, i.e. the region of allowable points
S formed by constraints (5.5) coincides with the set of Pareto optimal points §°, §° = S.

5.2. Methodology for Modeling and Making an Optimal Decision on the Choice of Parame-
ters of Complex Engineering Systems in Conditions of Certainty, Uncertainty

As an object of research, we consider "Engineering systems”, which include "technical sys-
tems", "technological processes”, "materials”, [17, 42, 44]. The study of the engineering system is
carried out, firstly, under conditions of certainty, when the data on the functional characteristics of
the engineering system are known; secondly, under conditions of uncertainty, when discrete values
of individual characteristics are known; There is also data on the restrictions that are imposed on the
functioning of the system. Mathematical software is based on the methods of vector optimization
presented in the third section. Methodological support for modeling the engineering system is formed
as: "Methodology for Modeling and Making an Optimal Decision on the Choice of Parameters of
Complex Engineering Systems in Conditions of Certainty, Uncertainty".

5.2.1. Types of Problems Arising in the Process of Modeling and Making an Optimal Decision
on the Selection of Parameters of Complex Engineering Systems

The problems that arise in the process of making an optimal decision on the selection of optimal
parameters of complex Engineering systems on the basis of vector optimization include three types
sequentially.

1 type. Solution of a vector problem of mathematical programming with equivalent criteria.
The result obtained is the basis for further research of the system. In this case, the method of solving
a vector problem with equivalent criteria is used. If the result obtained satisfies the decision-maker
(decision-maker - designer), then it is taken as a basis. If it does not satisfy, then move on to the
second type (direct problem) or the third type of solving vector problems (Inverse problem).

2 type. The solution of the direct problem of vector optimization, which consists in the follow-
ing: "What will be the indicators (characteristics) if the parameters of complex engineering systems
are changed." - The method of solving a vector problem with equivalent criteria is used.

3 type. The solution of the inverse problem of vector optimization, which consists in the fol-
lowing: "What will be the parameters of complex engineering systems with given characteristics". -
A method for solving a vector problem at a given criterion priority is used.

5.2.2. Methodology for Modeling and Making an Optimal Decision on the Choice of Parame-
ters of Complex Engineering Systems in Conditions of Certainty, Uncertainty

The methodology includes three blocks, divided into a number of stages.

Block 1. The formation of technical specifications, the transformation of uncertainty condi-
tions (related to experimental data) into conditions of certainty, the construction of a mathematical
and numerical model of an engineering system (the process of modeling of an engineering system)
includes 4 stages.

Stage 1. Formation of technical specifications (initial data) for numerical modeling and selec-
tion of optimal system parameters. The initial data is formed by the designer who designs the engi-
neering system.

Stage 2. Construction of mathematical and numerical model of the engineering system in con-
ditions of certainty and uncertainty.

Stage 3. Transformation of uncertainty conditions into certainty conditions and construction of
a mathematical and numerical model of an engineering system under conditions of certainty.

Stage 4. Construction of an aggregated mathematical and numerical model of an engineering
system under conditions of certainty

Block 2. Methodology of the process of optimal decision making (selection of optimal param-
eters) in an engineering system based on vector optimization (the process of simulation of an engi-
neering system)

Stage 5. Solution of a vector problem of mathematical programming (VPMP) - a model of an
engineering system with equivalent criteria (solution of a direct problem).

Stage 6. Geometric interpretation of the results of the vector problem of mathematical program-
ming solution with N parameters and K criteria into a two-dimensional coordinate system in relative
units.
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Stage 7. Solution of a vector problem of mathematical programming - a model of an engineering
system with a given priority of the criterion (solution of the inverse problem).

Block 3. Research, design, geometric interpretation and selection of optimal parameters of a
complex engineering system in multidimensional mathematics includes 2 stages.

Stage 8. Geometric interpretation of the solution results in the design of an engineering system
for the transition from two-dimensional to N-dimensional space in relative units.

Stage 9. Geometric interpretation of the solution results in the design of an engineering system
for the transition from two-dimensional to N-dimensional space in physical units.

6. Selection of optimal parameters of a material of a complex structure under conditions
of certainty and uncertainty on the basis of multidimensional mathematics. Numerical imple-
mentation.

The numerical realization of the choice of optimal parameters of a material of a complex struc-
ture is carried out in accordance with the theoretical foundations of multidimensional mathematics,
including axiomatics, principles of optimality and constructive methods of multidimensional mathe-
matics both with equivalent criteria and with a given priority of criteria, in accordance with Section
2.

The methodology of the process of making an optimal decision (selection of optimal parame-
ters) of an engineering system, including the material of a complex structure, is set out in Section 5.
The problem of decision-making in a complex structure of the material is considered, which is known
to:

first, data on the functional relationship of several characteristics with its components (condi-
tions of certainty); secondly, data on a certain set of discrete values of several characteristics (exper-
imental results), in relation to discrete values of parameters — experimental data (uncertainty condi-
tions); thirdly, the restrictions imposed on the functioning of the material of a complex structure.

The numerical problem of modeling a material of a complex structure is considered with equiv-
alent criteria and with a given priority of the criterion.

6.1. Block 1. Formation of technical specifications and construction of a mathematical and
numerical model of a material of complex structure (the process of modeling of the structure (com-
position) of the material).

The first stage, as well as the stage of analyzing the results of the solution, choosing the priority
criterion and its value, is performed by the constructor of a material of a complex structure. The
remaining stages are performed by a mathematician-programmer.

6.1.1. Stage 1. The technical assignment: ""The choice of optimum parameters of material®

It is given. Material which structure is defined by four components: Y = {y;,y,, y3, y4}—a vec-
tor (operated) variable. Y values represent a vector of managed variables. The parameters of the ma-
terial structure are defined, which vary within the following limits:

21<y,<79; 5<y,<59; 21<y3<9.0; 2.2<y,<7.0.

Input data for a decision-making are four characteristics:

The functioning of the structure of the material is determined by four characteristics (criteria):
H(Y) = {h,(Y),h,(Y),h3(Y),h,(Y)}, the value of which depends on the parameters : Y =
{1, ¥2,¥3, a}.

Conditions of certainty. For the first characteristic: h,(Y) the functional dependence on the
parameters Y = {y,, v = 1,V,V = 4} is known:

h,(Y) = 323.84 — 2.249y, — 3.49y, + 10.7267y; + 13.124y, + 0.0968y,y, —
0.062y;y; — 0.169y,y, + 0.0743y,y; — 0.1042y,y, — 0.0036y5y, + 0.0143y? + 0.0118y2 —
0.2434y2 — 0.5026x2. (6.1)

Functional limitations imposed on the third characteristic (property) of the material:

min h;(X)=92.4, max h;(X)=161.5. (6.2).

Conditions of uncertainty. The results of the experimental data are known: for the second,
third and fourth characteristics h,(Y), k = 2, 3, 4 for the corresponding values of the parameters:
Y = {yv = {yw: [ = 1,M},U = 1'V}'

The numerical values of the parameters Y and the characteristics h,(Y), h3(Y), h,(Y) are pre-
sented in Table 2.
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Table 2. Experimental values of the parameters y;, v,, v3, ¥, and characteristics of the structure
of the material h,(Y), h5(Y), hy(Y).

V1 Y2 | V3| Va h(Y) | h(Y) hy(Y)
20 0 2 2 1149.6 | 115.1 24.24
20 0 2 5 | 1164.0 | 1145 27.60
20 0 2 8 | 1176.0 | 1144 28.80
20 0 5 2 | 12120 | 118.8 30.00
20 0 5 5 | 1260.0 | 113.8 31.20
20 0 5 8 | 1257.6 | 113.3 32.40
20 0 8 2 | 1256.4 | 110.7 33.60
20 0 8 5 | 1252.8 | 109.2 34.80
20 0 8 8 | 1251.6 | 108.5 34.80
20 30| 2 2 | 21432 | 1283 19.92
20 30| 2 5 | 2154.0 | 127.4 21.60
20 30| 2 8 | 2163.6 | 126.8 25.20
20 30| 5 2 | 2176.8 | 126.1 29.76
20 30| 5 5 | 2185.2 | 1243 33.48
20 30| 5 8 | 21984 | 1241 37.20
20 30| 8 2 | 22116 | 1239 39.48
20 30 | 8 5 | 22320 | 1214 42.00
20 30 | 8 8 | 22452 | 121.7 49.20
20 60 | 2 2 | 29544 | 1504 15.60
20 60 | 2 5 | 2820.0 | 144.9 18.00
20 60 | 2 8 | 2772.0 | 140.8 21.60
20 60 | 5 2 | 2748.0 | 138.6 24.24
20 60 | 5 5 | 2832.0 | 140.8 28.80
20 60 | 5 8 | 2904.0 | 1435 32.40
20 60 | 8 2 | 30228 | 146.0 35.16
20 60 | 8 5 | 3036.0 | 144.9 39.60
20 60 | 8 8 | 3056.4 | 143.8 44.88
50 0 2 2 | 3583.2 | 1813 11.28
50 0 2 5 | 3601.2 | 180.8 14.40
50 0 2 8 | 3608.4 | 179.4 16.80
50 0 5 2 | 3616.8 | 179.1 21.12
50 0 5 5 | 3622.8 | 178.0 22.80
50 0 5 8 | 3637.2 | 177.6 27.60
50 0 8 2 | 3651.6 | 176.9 30.84
50 0 8 5 | 3672.0 | 175.3 36.00
50 0 8 8 36852 | 174.7 40.56
50 30| 2 2 | 11952 | 1236 52.80
50 30| 2 5 | 1212.0 | 118.7 60.00
50 30| 2 8 | 1236.0 | 115.9 64.80
50 30| 5 2 | 12516 | 1151 68.64
50 30| 5 5 | 1272.0 | 1132 75.60
50 30| 5 8 | 1296.0 | 111.8 82.80
50 30| 8 2 | 1318.8 | 110.7 88.08
50 30| 8 5 | 1344.0 | 108.2 97.20
50 30 | 8 8 | 1388.4 | 106.3 | 107.64
50 60 | 2 2 | 2176.8 | 132.8 40.56
50 60 | 2 5 | 2196.0 | 131.1 45.60
50 60 | 2 8 | 2220.0 | 129.7 52.80
50 60 | 5 2 | 22452 | 1283 60.00
50 60 | 5 5 | 2286.0 | 127.0 67.20
50 60 | 5 8 | 2294.4 | 125.6 73.20
50 60 | 8 2 | 2313.6 | 1239 79.44
50 60 | 8 5 | 2340.0 | 1145 85.20
50 60 | 8 8 | 2382.0 | 1195 99.00
80 0 2 2 | 2988.0 | 154.8 31.92
80 0 2 5 | 3012.0 | 153.2 36.00
80 0 2 8 | 3036.0 | 151.8 43.20
80 0 5 2 | 3056.4 | 150.4 51.36
80 0 5 5 | 3108.0 | 150.7 61.20
80 0 5 8 | 3156.0 | 151.2 72.00
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80 0 8 2 | 32448 | 1515 82.80
80 0 8 5 | 3228.0 | 1449 86.40
80 0 8 8 | 3193.2 | 140.8 90.36
80 | 30| 2 2 | 3616.8 | 185.7 23.28
80 | 30| 2 5 | 3639.6 | 183.5 30.00
80 | 30| 2 8 | 3660.0 | 182.2 36.00
80 | 30| 5 2 | 3685.2 | 181.3 42.72
80 | 30| 5 5 | 3708.0 | 1794 48.00
80 | 30| 5 8 | 3732.0 | 178.0 54.00
80 | 30| 8 2 | 3753.6 | 176.9 62.16
80 | 30| 8 5 | 3672.0 | 175.3 73.20
80 | 30| 8 8 | 3822.0 | 1725 81.72
80 | 60 | 2 2 | 1218.0 | 128.3 87.00
80 | 60 | 2 5 | 1248.0 | 125.6 94.80
80 | 60 | 2 8 | 1272.0 | 124.2 | 103.20
80 | 60 | 5 2 | 1318.8 | 121.7 | 116.16
80 | 60 | 5 5 | 1344.0 | 118.7 | 126.00
80 | 60 | 5 8 | 1392.0 | 1159 | 136.80
80 | 60 | 8 2 | 14220 | 1151 | 145.44
80 | 60 | 8 5 | 1464.0 | 1104 | 156.00
80 | 60| 8 8 | 1524.0 | 1085 | 174.72
min y;(X), i 11496 | 92.4 11.3
=1,..81
max y; (X), i 3822.0 | 1615 174.7
=1,..,81

In the decision, it is desirable to obtain the value of the score for the first and third characteristics
(criterion) as high as possible: : h,(Y) - max, h;(Y) — max; second and fourth as low as possible:

h,(Y) - min, h,(Y) - min.

Parametrical restrictions change in the following limits:

y; € [20.50.80.], v, € [0.30.60.],y; € [2.0 5.0 8.0],y, € [2.2 5.5 8.8]. (6.3)

21<y,<79, 5<y,<59, 2.1<y,<9, 2.2<y,<7.0.

The chemical composition of the material of the product is determined (per unit volume,
weight) by the percentage content of a certain set of material components, which in total are equal to
one hundred percent:

Y1t ¥z + y3,+y, = 100. (6.4)

It is required. 1) To construct mathematical model of structure of the studied material in the
form of a vector problem of mathematical programming.

2) To carry out model operation: first, on the basis of the constructed mathematical model,
secondly, on the basis of methods of solution of a vector problem of non-linear programming at
equivalent criteria, and, thirdly, the software developed for these purposes in the MATLAB system.

3) To make an optimal solution: The choice of optimum composition (structure) of material
according to its functional characteristics taking into account their equivalence.

4) To choose the optimum composition of structure of material according to its functional char-
acteristics taking into account a priority of the third criterion.

Stage 1la. Construction of a mathematical model of the structure of the material in conditions
of certainty and uncertainty in a general form. The construction of a mathematical model for making
an optimal management decision on the structure of the material is shown in section 2.3. In accord-
ance with (2.21)-(2.27), we will present a mathematical model of the material under conditions of
certainty in the form of a vector optimization problem:

Opt H(Y) = {maxH,(Y) = {maxh, (¥),k =1,K '}, (6.5)
min Hy(Y) = {min by (¥),k =1,K3/, (6.6)

at restrictions G(Y) <B, YV _, y,(t) = 100%, (6.7)

A < b (Y) < Pk = TK,y"™ < y; < y"*,j = 1N, (6.8)

where Y = {y;, j = 1, N} is a vector of controlled variables (constructive parameters);
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H(Y) ={H,(Y) H,(Y)} - vector criterion, each component of which represents a vector of
criteria (characteristics) of the material, which functionally depend on Y values of the vector of vari-
ables;

in (6.8) A¥"<h, (Y) <h*** k = 1,K is a vector-function of the constraints imposed on the
functioning of the material,

in (6.8) y}”i"s yj <yj",j = 1, N are parametric constraints.

It is assumed that the functions h, (Y), k = 1, K are differentiable and convex, g;(¥), i = 1,M
are continuous, and the set of valid points S given by constraints (6.8) is not empty and is a compact:

S={YeR"G(Y) <0,Y™" <Y < ymax} x ¢,

6.1.2. Stage 2. Construction of a numerical model of the structure of a material under con-
ditions of certainty

The construction of a model of the structure of a material under conditions of certainty is de-
termined by the functional dependence of each characteristic, restrictions on the parameters of the
material. In our example, the characteristic (6.2) and the constraints (6.1) are known. Using data (6.1),
(6.2), we will build a numerical model in the form of a vector problem of nonlinear programming
(6.5)-(6.8) under conditions of certainty:

max hy(Y) = 323.84 — 2.249y, — 3.49y, + 10.7267y; + 13.124y, + 0.0968y,y, —
0.062y,y; — 0.169y,y, + 0.0743y,y; — 0.1042y,y, — 0.0036y5y, + 0.0143y# + 0.0118y2 —

0.2434y2 — 0.5026y2, (6.9)
at restrictions: y; + y, + y; + y, = 100, (6.10)
21<y,<79,5<y,<59,2.1<y;<9.0,22<y,<7.0. (6.11)

These data are further used in the construction of a general mathematical model of the material
(under conditions of certainty and uncertainty).

6.1.3. Stage 3.1. Transformation of experimental data (uncertainty conditions) into data with
functional dependence (certainty conditions) and construction of a numerical model

Conditions of uncertainty are characterized by the fact that the initial data characterizing the
object under study are represented by: a) random, b) fuzzy, or c) incomplete data, i.e., under condi-
tions of uncertainty, only a finite set of measured parameters = 1,Y are known:

Y, = {y;,,v=1,V},i = 1,M,where v = 1,V isthe number of components (parameters) from
which the material can be composed (manufactured), i = 1, M is the number and set of data; and the
corresponding set of K characteristics:

he Y, =y, v=1,V},i=1,M),k =1,K.

Therefore, under conditions of uncertainty, there is not enough information about the functional
dependence of each characteristic and constraints on the parameters. The information data of options
a) and b) shall be converted into numerical data of option c) and shall be presented in tabular form.
The paper considers option ¢) information with incomplete data, which, as a rule, is obtained as a
result of an experiment.

Taking into account the measured parameters, Y,, and the corresponding set of K characteristics:
he (Y, = {y;,, v=1,V},i =1,M),k = 1,K Let us present a matrix of results of experimental data

on the material under study:
aq

Y] = Y11, Y12, Y13, Y14 ha (Y1), h3 (Y1), ha (V1)

I= = , (6.12)

am Yv = Ym1 Yz Yz Ymaha Vi), hs (Yar), ha(Yy)
Let us present a mathematical model of the structure of the material under uncertainty in the

form of a vector problem of mathematical programming:

Opt H(X) = {maxl;(Y) = {maxhy (Y;, i = 1, M)}7, k =1, K}¥"}, (6.13)
minl,(Y) = {minhy (Y;, i =1, M)}T, k =1, K¥"<}3, (6.14)

at restriction A < h(Y) < A9k =1,K, (6.15)
Yo=1 Y5 () = 100%, ¥ < y, < ¥y, v = 1,V, (6.16)

where Y = {y,, v = 1,V} is the vector of controlled variables (parameters);
H(Y) = {I,(Y) I,(Y)} is a vector criterion, each component of which represents a vector of
criteria (output characteristics of the object under study). The value of the characteristic (function)
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depends on the discrete values of the vector of the variables Y. I;(Y) = 1, K}, I,(Y) = 1, K}**¢
(uncertainty) — a set of max and min criteria formed under uncertainty; in (6.15) A" < h(X) <
h*** k = 1,K — vector-function of the restrictions imposed on the functioning of the object under
study, y/n <y, < yme* p =1,V — parametric constraints of the object under study.

6.1.3. Stage 3.2. Construction of a numerical model of the structure of a material under un-
certainty

The construction of a numerical model of the structure of the material under uncertainty consists
in the use of qualitative and quantitative descriptions of the material, the experimental data obtained
on the principle of "input-output” in Table 1..

Transformation of information (initial data in Table 1):

hy,(Y;,i =1,M), h3(Y;,i = 1,M), h,(Y;,i = 1, M) into a functional form: h,(Y), h3(Y), he(Y)
is carried out by using mathematical methods (regression analysis). The initial data of Table 2 are
formed in the MATLAB system in the form of a matrix:

I'=1Y,H| ={¥i1, Y2, i3 Via» hizs iz, hig, 1 =1, M} (6.17)

st kaxxgoro Habopa AKCMEPUMEHTATbHOTO JaHHBIX hy, k = 2,3,4 ctpoutcst GpyHKIUs pe-

rpeccH MeTOJOM HAaHMMEHBIIMX KBajapaToB min Y1, (y; — ¥,)? B cucteme MATLAB. Jlns sToro

dbopmupyercsi monuHOM Ak, OTIPEACTSIONINN B3aUMOCBsI3b napaMeTpoB: Y; = {V;1, Vi2, Viz, Via} 1

byuxumu y, = h(Y;, Ax), k = 2,3,4 . Pesymbratom siBisieTcst cucrema kodddurimeHros: A, =
{Aok, A1k -+ » A141 }> KOTOPBIC OMIPEACTSAIOT KO3 (DUIIMEHTHI KBaJPATHYHOTO MOJIMHOMA!

For each set of experimental data hy, k = 2, 3,4 a regression function is constructed by the
method of least squares min Y (y; — ,)? in the MATLAB system. To do this, a polynomial Ax is
formed, which defines the relationship of the parameters: Y; = {y;1, Y2, Vis, Yia} and the functions
of

Y = h(Y;, Ap), k = 2,3,4. The result is a system of coefficients: Y; = {yi1, Vi2, Vi3, Via},
which determine the coefficients of the quadratic polynomial:

hi (Y, A) = Aok + A1y + AoiYa + AskYs + AarYa + Asiy1Y2 + Ageyrys + Azediya +

AgkY2Y3 t AokY2Ya + A1okY3Ya t+ Aq1kyi +_A12k3’22 + 1_413k3’3% +Aiaryi k= 2,3, 4. (6.18)
Polynomial approximation software with four variables and fourteen factors is presented in

[44]. As a result, the experimental data of Table 1 are transformed into a system of coefficients of
three functions of the form (6.18) in the form of a table (Program Z_Material_ MMTT32_0s13_4k).
Polynomial approximation software with four variables and fourteen factors is presented in
[44]. As a result, the experimental data of Table 1 are transformed into a system of coefficients of
three functions of the form (4.18) in the form of a table (Program: Z_Material MMTT32_0s13_4k):
A0=[323.8408 954.8634 110.02 21.0051 % Ay (6.19)

-2.2495 28.6719 0.9106 -0.0101 %A

-3.4938 37.0392 0.6206 -0.8403 %A,

10.7267 -31.0303 -0.4287 -0.4314 %A;

13.1239 -54.0031 -2.5176 1.1718 %A,

0.0969 -0.9219 -0.0151 0.0166 %Ag

-0.0621 0.5644 -0.0094 0.0850  %Ag;

-0.1696 0.8966 0.0222 -0.0001 %A,

0.0743 -0.1540 -0.0198 0.0522 %Ag

-0.1042 0.3919 0.0184 0.0003  %Aq

0.0036 -0.0135 -0.0006 0.0006 %A

0.0142 0.0477 -0.0004 -0.0021 %Ay

0.0117 0.0437 -0.0003 0.0035 %A,

-0.2433 3.8489 0.0390 0.0061  %A;3.

-0.5026 3.1748 0.1414 -0.0310]; %Ai4x

Rj=[0.6115 0.7149 0.6551 0.9017];
RRj=[0.3740 0.5111 0.4292 0.8130];
Ha ocroBe  Ao(2) Ao(3) Ao(4) crposites dynkuuu h,(Y), h;(Y) u hy(Y), xotopsie ¢
YYeTOM MOJIYYCHHBIX KOIPPUIIMEHTOB (4.19) SABISIOTCS YUCTEHHOU MOOeIbI0 CHIPYKIYPbl Mame-
puana 6 yciioeuix Heonpeoeﬂeuuocmu:
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On the basis of Ao(2) Ao(3) Ao(4), the functions h,(Y), h;(Y) and h,(Y) are constructed,
which, taking into account the obtained coefficients (4.19), are a numerical model of the structure
of the material under uncertainty:

Opt H(YY) = {max h3(Y)=110.22 + 0.7918y, + 1.73y, — 0.3713y; — 2.20y, — 0.0132y,y, —
0.008y,y; + 0.0193y,y, — 0.0172y,y; + 0.0161y,y, — 0.0006y5y, — 0.0004y? —

0.0002y2 + 0.0335y% + 0.124y2, (6.20)

min h,(Y)=954.86 + 28.67y; + 37.03y, — 31.03y3 + 54y, — 0.922y,y, — 2y,y5 +

0.896y,y, — 0.154y,y, + 0.3919y,y, — 0.0134y,y, + 0.0478yZ + 0.0438y2 + 3.8489y2 +
3.1748y2, (6.21)

min h,(Y)=21.004 — 0.0097y, — 0.841y, — 0.4326y; + 1.1723y, + 0166y, y, +

0.085y;y; — 0.0001y;y, + 0.0523y,y; + 0.0002y,y, + 0.0006y5y, — 0.0022y? +

0.0035y% + 0.006y% — 0.0311y2}, (6.22)
at restriction: y; + y, + y; + y, = 100, (6.23)
21<y,<79,5<y,<59,2.1<y,<9.0,2.2<y, <7.0. (6.24)

Minimum and maximum values of experimental data are y;, ..., y, are presented at the bottom
of Table 2. The minimum and maximum values of the functions h,(Y), h3(Y), h,(Y), h,(Y) differ
slightly from the experimental data. The correlation index and coefficients of determination are pre-
sented in the lower rows of Table 2. The results of regression analysis (6.20)-(6.24) are further used
when it is necessary to build a general mathematical model of the material.

6.1.4. Stage 4. Construction of an aggregated mathematical and numerical model of the
structure of the material under conditions of certainty

Combining mathematical models of the structure of the material under conditions of certainty
(6.5)-(6.8) and uncertainty (6.13)-(6.16), we will present a mathematical model of the material under
conditions of certainty and uncertainty in the aggregate in the form of a vector problem:

Opt H(Y) = {maxH,(Y) = {maxh, (Y),k =1,K**}, (6.25)
max [, (Y) = {maxhy (;, i = 1, M)}T, k =1, K}"}, (6.26)

min Hy(Y) = {min by (X), k =1, K3, (6.27)

minl,(Y) = {minh, (V;, i = T, M)}", k =1, K*°}}, (6.28)

at restriction: h™ < hy(Y) < h?™, k= 1TK,y"" <y; < y/"*,j =1,N, (6.29)
where Y = {y;, j = 1, N} - vector of controlled variables (design parameters);

Hi(Y) = {he(V),k = LK} Hy(V) = {he(V), k = 1,3 -

many max and min functions, respectively;

L(Y) = {he (Vi = Tk = LK™, L(Y) = {{h(Y;, i = M), k = L,KF™)
Multiple max and min matrices, respectively; (definiteness), K{*¢. K3"¢ (uncertainty) is a set of cri-
teria max and min formed under conditions of certainty and uncertainty;

Combining numerical models of the structure of the material under conditions of certainty (6.9)-
(6.11) and uncertainty (6.20)-(6.24), we will present a numerical model of the material under condi-
tions of certainty and uncertainty in the aggregate in the form of a vector problem:

opt F(X) = {max H;(Y) = {max h,(X)=323.84 — 2.25y; — 3.49y, + 10.72y; +

13.124y, + 0.0968y,y, — 0.062y,y; — 0.169y,y, + 0.0743y,y; — 0.1y,y, — 0.0036y5y, +
0.0143y? + 0.0118y% — 0.2434y% — 0.5026y7, (6.30)

max h3(Y)=110.22 + 0.7918y; + 1.73y, — 0.3713y; — 2.20y, — 0.0132y,y, —

0.008y,y; + 0.0193y,y, — 0.0172y,y; + 0.0161y,y, — 0.0006y5y, — 0.0004y? —
0.0002y2 + 0.0335y2 + 0.124y2}, (6.31)

min H,(Y) = {min h,(Y)=954.86 + 28.67y; + 37.03y, — 31.03y, + 54y, —

0.922y,y, — 2y,y3 + 0.896y,y, — 0.154y,y; + 0.3919y,y, — 0.0134y;y, + 0.0478y% +

0.0438yZ + 3.8489y2 + 3.1748yZ, (6.32)
max h,(Y)=21.004 — 0.0097y, — 0.841y, — 0.4326y, + 1.1723y, + 0166y,y, +
0.085y;y; — 0.0001y;y, + 0.0523y,y; + 0.0002y,y, + 0.0006y5y, — 0.0022y? +

0.0035y2 + 0.006y2 — 0.0311y2}}, (6.33)
at restrictions: y; + y, + y; + y, = 100, (6.34)
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21<y,<79,5<y,<59,2.1<y,<9.0,2.2<y,<7.0. (6.35)

The vector problem of mathematical programming (6.30)-(6.35) is a numerical model for mak-
ing an optimal decision of the structure of a material under conditions of certainty and uncertainty in
the aggregate.

6.2. Block 2. Methodology of the process of making an optimal decision (selection of optimal
parameters) of the material structure based on the vector problem (VPMP

6.2.1. Stage 5. Solution of VPMP - model of material structure with equivalent criteria (solution
of a direct problem).

For solving vector problems of mathematical programming (6.30)-(6.35), methods based on
axiomatics and the principle of optimality 1 are presented. The algorithm is presented as a series of
steps.

Step 1. Decides problem (6.30) - (6.35) by each criterion separately, at the same time the func-
tion fmincon(...) of the MATLAB system is used, the appeal to the function fmincon(...) is considered
in [44]. As a result of calculation for each criterion, we receive optimum points:

Xi and fy = i (Xp), k=1K, K =4

sizes of criteria in this point, i.e. the best decision on each criterion:

1: Yy = {y, = 46.56,y, = 43.23,y; = 8.0,y, = 2.2}, h} = h,(¥y") = —387.9;

2:Y; = {y; = 55.60,y, = 34.19,y5 = 8.0,y, = 2.2}, h} = h,(Yy) = 1361.4;

3:Y5 = {y; =31.90,y, = 59.00,y; = 2.1,y, = 7.0}, h§ = h3(¥3) = —210.3;

4:Y; = {y; = 36.70,y, = 59.00,y; = 2.1,y, = 2.2}, hj = h,(¥;) = 30.714

The result the solution of a problem of non-linear programming (6.30)-(6.35) in three-dimen-
sional frames of x1, xs and f; (X), f2(X), f3(X), fa(X) is presented on Fig 6.5, 6.6, 6.7, 6.8.

The location of the optimum points X7, X5, X3, X; in the region of the constraints (6.30)-(6.35)
in the coordinates {x;,x5} is shown in Figure 6.1. The set of points of S° lying in the domain of
restrictions between the pointsXy, X5, X3, X; represent a set of Pareto optimal points.

Set of Pareto on two-measure  plane: x1 - x3

8 T T T T *
/ 1 X2
7323.-2.249'%, 349", +10.7x +13.12%,10.00°% "X ..

A > g A

12 Apdg:Ay
7 _ -

| £,=954.863+23/898* +28.671*,, -37.03% ;54.003"

6 — -

® el ]

X O 0
VI
®
X
VI

4t N
f,=21.0048-0.0097"x -0.840"x + 0.4326% ;+1.1723* , +0.0166*|*X .

3 — -

2 1 I 1

30 35 5 50 55 60

48 4
0< x1<60
X1

Figure 6.1. The set of admissible points and Pareto optimal S°cS, X7, X5, X3, X;
in the coordinate system {x; , x5}

___ Step 2. Determine the worst value of each criterion (antioptimum): Y and A = hy (Y;), k =
1, K, K=4. Why is problem (6.30)-(6.35) solved for each criterion k = 1, K; by the minimum, for each
criterion k = 1,K, to the maximum. As a result of the solution, we get: X = {x;,j = 1, N} - the
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optimum point for the corresponding criterion, k = 1,K; f;2 = f.(X?) is the value of the k-th crite-
rion at the point, X2, k = 1, K (superscript zero):

Y1 ={y; =31.9,y, = 59.0,y; = 2.1,y, = 7.00}, h? = hy (Y?) = 296.6;

Y ={y, =319,y, =59.0,y; = 2.1,y, = 7.},hd = h,(Y) = —2458.5;

Y? ={y, =78.16,y, =9.02, y; = 8,y, = 4.81}, h3 = h3(Y?) = 169.26;

Y ={y, =62.71,y, = 22.9,y; = 8,y, = 6. 39} h4 hy (YY) = —73.62.

The obtained points of the anti-optimum X2, X2, X2, X2 are shown in Figures 6.5, ..., Figure
6.8 respectively.

Step 3. Systems analysis of a set of points that are Pareto-optimal is performed, (i.e. the analysis
by each criterion). In points of an optimum of Y* = {Y;", Y;, Y5, Y, }sizes of target functions of

k=1,K
FX) = |1l
avectorof D = (d, d, d; d,)T of deviations are determined by each criterion on an admissible

setof S: dy = hj — hk, k = ﬁ and matrix of the relative estimates of

/MY 1R’ " where Me(X) = (hy, — hy)/dy
388 0 1444 2 183.9 68.5 91.4

H(Y") = 382.01361.4177.372.1 _ |[-1097
296.6 2458.5 210.4 30.2|| ' ¢ 41.09 (|
330.12210.9 208.0 30.7 —42.9
1.0000 0.9245 0.3560 0.1197

« _ 110.9367 1.0000 0.1968 0.0363

A = 0.0 0.0 1.0000 1.011 (6.36)

0.3669 0.2257 0.9427 1.0000

The analysis of sizes of criteria in the relative estimates shows that at the points of the optimum

Y* ={Y],YS, Y5, Y, } (on diagonal) the relative assessment is equal to unit. Other criteria there
is much less unit. It is required to find such point (parameters) at which the relative estimates are
closest to unit. The solution of this problem is directed to the solution of A-problem - step 4, 5.

Step 4. Creation of the A-problem is carried out in two stages: originally the maximine problem
of optimization with the normalized criteria is under construction:

A% = maxyesminggA,(X), G(X)<0,X >0, (6.36)

which at the second stage will be transformed to a reference problem of mathematical pro-

gramming (A-problem):

A% = max A, (6.37)
—_no _po
at restrictions: A — &)fl <0, A— %s 0, (6.38)
h;—h? h%—h)

p— M < 0 A — M< 0 (6 39)

h%—h3 hy-ng ’
yi+ y2+ y3 + y, =100, (6.40)
0<A<1, 21<y,<79,5<y,<59,21<y,<9.0,2.2<y,<7.0. (6.41)

where the vector of unknowns has dimensionof N + 1: Y = {y,, ... , ¥n, A};
functions h,(Y), h,(Y), h5(Y), h,(Y). correspond to (6.30)-(6.35). Substituting the numerical
values of the functions h, (Y), h,(Y), h3(Y), h,(Y), we get A-problem:

A’ = max A, (6.42)
at restrictions: & — 323.84—2.249y; —3.49+x2 ... —0.2434y2-0.5026y7 —h? <0, (6.43)
: S .
2 — 110.22+0.7918y1+1.73ylz— 1 +0.0335y2+0.124y7—hJ <0 (6.44)
f;_f30 0 - '
_954.8+28.67y1+37y;5— .. +3.8489y2+3.1748y2 —h9
A PR <0, (6.45)
21-0.0097y,;—0.841y,— ... +0.006y2—0.0311yZ—hJ
A — L Zhj;—hf{ 3 <0, (6.46)
yl + yz + y3 + y4 = 100, (647)
0<A<1, 21<y,<79,5<£y,<59,21<y;<9.0,2.2<y,<7.0. (6.48)

Step 5. Solution of the A-problem.
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For this purpose we use the function fmincon(...):  [Xo,Lo]=fmin-
con(*Z_TehnSist_4Krit_L',X0,A0,bo,Aeq,beq,Ibo,ubo,’Z_TehnSist_LConst',options).

As a result of the solution of VPMP (6.30)-(6.35) at equivalent criteria and A-problem corre-
sponding to it (6.42)-(6.48) received:

X° ={Y° ={y, =43.9,y, = 49.54,y; = 4.348,y, = 2.2,.° = 0.6087}, (6.49)

an optimum point — design data of material, X°.

The optimum point X°, which represents the design parameters of the material under equivalent
criteria (characteristics, shown in Fig. 6.1; h,(Y°), k = 1, K - values of criteria (characteristics of the
structure of the material):

{h1(Y°) = 364.0,h,(Y°) = 1790.7, h3(Y°®) = 194.3,hy(Y°) = 47.5}; (6.50)
A (Y°), k = 1, K- values of relative estimates
A (Y°) = 0.7372,1,(Y°) = 0.6087,A;(Y°) = 0.6087,A,(Y°) = 0.6087}; (6.51)

1°=0.6087 is the highest lower level among all relative estimates, measured in relative units::

A% =min (4,(Y°),A,(Y?),A3(Y°),1,(Y?)) = 0.6087.

A° — also called the guaranteed result in relative units. The guaranteed result A° shows that
1°=0.6087 and the characteristics of the material in relative units A, (Y?) and, accordingly, the char-
acteristics of the structure of the material h; (Y °) cannot be improved without degrading other char-
acteristics.

Note that according to the theorem 1, at the point Y° Criteria 2, 3 and 4 are contradictory. This
contradiction is determined by the equality of:

A(Y°) =23(Y°) = A, (Y?) =A% = 0.6087,

and the rest of the criteria are inequality{A,(X°) = 0.7372} > A°.

Theorem 1 serves as the basis for determining the correctness of the solution of the vector
problem. In a vector problem of mathematical programming, as a rule, the equation for two criteria
is satisfied:

A0 =2,(Y°) =2,(Y°), q,p € K,X € S, (inour example, such criteriaare 2, 3, 4), for the other
criteria it is defined as inequality.

6.2.2. Stage 6. Geometric interpretation of the results of the VPMP solution with 4 parameters
and 4 criteria into a two-dimensional coordinate system (with 2 parameters) in relative units.

For a geometric interpretation of the results of the VPMP solution with 4 parameters and 4
criteria, we will introduce changes in the two-dimensional coordinate system (with 2 parameters) in
relative units. The VPMP (6.30)-(6.35) parameters are y, and y5 are considered as variables, param-
eters y, and y, are considered permanent. Let's assign a dimension to the constant parameters:

y, = 49.5492,y, = 2.2 according to the outcome of the VPMP decision (6.30)-(6.35) with
equivalent criteria presented in (6.49). As a result, the VPMP (6.30)-(6.35) became two-dimensional.
As a result of the decision of VPMP (6.30)-(6.35) with two variables y; and y,; (additional "0"
Y lomax was introduced into the designation of the results) obtained.

1. Coordinates of the point according to the first criterion to the maximum:

Ylomax = {x; =46.5676 x, =49.5492 x5 =8.0000 x, =2.2000}. (6.52)
Values of the four criteria at the point Y lomax:
FYlomax = {f;(Ylomax) =403.6 f,(Ylomax)= 1430.3 f;(Y1lomax) =190.2

fa(Ylomax) =72.7.
The values are relative to the estimates of the criteria at the point X1omax:
LYlomax = {A;(Y1lomax) =1.1708 A,(Y1lomax) = 0.9372
A;(Y1lomax) =0.5098 A,(Y1lomax) =0.0207. (6.53)
Coordinates of the point according to the first criterion for the minimum:
YZlomin ={31.9000 49.5492 2.1000 2.2000}.
The values of the six criteria at the point Y 1omin are:
FY1lomin ={1.0e+03 * 0.3037 2.2073 0.1957 0.0243}.
The values are relative to the estimates of the criteria at the point Y1omin:
LY1lomin =(0.0774 0.2290 0.6441 1.1503) (6.54)
2. Coordinates of the point, functions and relative estimates for the second criterion for maxi-
mum and minimum:
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Y2omax ={55.6075 49.5492 8.0000 2.2000}.

FY2omax ={1.0e+03 * 0.4320 1.1936 0.1909 0.0842}.

LY2omax ={1.4813 1.1530 0.5268 -0.2467}.

Y2omin ={31.9000 49.5492 2.1000 2.2000).

FY2omin ={1.0e+03 * 0.3037 2.2073 0.1957 0.0243}.

LY20omin ={0.0774 0.2290 0.6441 1.1503}. (6.55)

3. Coordinates of the point, functions and relative estimates for the third criterion for maxi-
mum and minimum:

Y3omax ={31.9000 49.5492 2.1000 2.2000 }.

FY3omax ={1.0e+03 * 0.3037 2.2073 0.1957 0.0243}.

LY3omax ={0.0774 0.2290 0.6441 1.1503}.

Y3omin ={78.1673 49.5492 8.0000 2.2000}.

FY3omin ={512.9622 636.7052 192.3963 111.3139}.

LY3omin ={2.3673 1.6606 0.5629 -0.8782}. (6.56)

4. Coordinates of the point, functions, and relative evaluations of the fourth criterion for maxi-
mum and minimum:

Y4omax ={36.7000 49.5492 2.1000 2.2000}. (6.57)

FY4omax ={1.0e+03 * 0.3182 2.1306 0.1964 0.0283}.

LY4omax ={0.2363 0.2989 0.6603 1.0562}.

Y4omin ={62.7123 49.5492 8.0000 2.2000}. (6.58)
FY4omin ={1.0e+03 * 0.4559 1.0129 0.1914 0.0930}.
LY4omin ={1.7432 1.3176 0.5391 -0.4511}. (6.59)

Let us present in general the results of the VPMP solution with two variable parameters x;
and x5 (two-dimensional VPMP):

Y =[Yopt(1,:)={46.5676 43.2324 8.0000 2.2000}, A,(Ylomax) =0.5;

Yopt(2,:)= {55.6075 34.1925 8.0000 2.2000}, A,(Y20max) =0.6087;
Yopt(3,:)={31.9000 59.0000 2.1000 7.0000}, A;(Y3omax) = 0.6087;

Yopt(4,:)= {36.7000 59.0000 2.1000 2.2000}A,(Y4omax) = 0.7372;

Yo(1:4)= {43.9022 49.5492 4.3486 2.200}, A(Yo) = A° = 0.5196. (6.60)

In the admissible set of points S formed by constraints (6.47)-(6.48), the optimum points are
Y, Y5, Y, Y, combined into a contour, represent a set of Pareto-optimal points, , S°c S, ('S are shown
in Figure 6.1. The coordinates of these points, as well as the characteristics of the material in relative
units A;(Y), A,(Y), A3(Y), A,(Y) are shown in Figure 6.2 in three-dimensional space x; x, and 2,
where the third axis A is a relative estimate.

Discussion. Let's compare the results of the solution of VPMP (6.30)-(6.35) with the variable
coordinates {y,y, y3 ¥4} (four-dimensional VPMP) presented in (6.49), (6.50), (6.51), with the re-
sults of the VPMP solution (6.30)-(6.35) with variable coordinates {y; y;} (two-dimensional VPMP)
presented in (6.60). (In Figures 6.2, ..., 6.7, the vector Y = {y,, ... ,yn,A} and the functions
hi(Y),hy(Y), h3(Y), hy(Y) are replaced by X ={xq4, ... ,xn,A}; functions
f1(X), £2(X), f3(X), f(X)).

As a result of the comparison, we see that the values of the four functions
hi(Y), h,(Y), h3(Y), hy(Y) at the optimum point Y? in the coordinates {y; y;} and A° Match.

Optimal values of criteria h, (Y}), k € K and the corresponding relative estimates do not match

Consider, for example, the optimal point, X3. Function, A;(X) is formed from the function
h;(X) with variable coordinates {y, ys;} and with constant coordinates {y.=49.54, ys=2.2}, taken
from the optimal point Y°. (6.49). At the point Y5 the relative estimate is A;(Y5) = 0.6441 — shown
in Figure 6.2 with a black dot. But we know that the relative estimate of A;(Y3) derived from the
function h;(Y3) in the third step, it is equal to one, let's denote it as A3(Ys) = 1 — shown in Figure
6.2 with a red dot.

The difference between A5(Y5) = 1 and A;(Y35) = 0.6441 A5(Ys) = 1 u A3(Y5) = 0.6441 is
an error A=0.3559 in the transition from a four-dimensional (and in the general case N-dimensional)
to a two-dimensional system. The point X7 is shown in the same way. and the corresponding relative
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estimates, A, (¥;") and A% (Y;"). Summarizing and combining the problems of the discussion, we can
formulate a methodology.

A-zadacha Vector Optimization four criterion

Lambda

-0.5 S
30

~ , - 3 - N
X3 X40 xo ] *

50 5 6 7

60 3

x1 x3

Figure 6.2. Geometric interpretation of the solution of the A-problem A, (X), A, (X), A3(X), A,(X)
and X;,X;,X3, X; coordinate x; ,x3 (= y; y3) and A

Methodology of geometric interpretation of the transition from N-dimensional to two-dimen-
sional dimension of function in a vector problem of mathematical programming.

Step 1. Construction and Solution of a A-Problem with N-Dimensional Parameters.

Step 2. Construction and solution of a A-problem with 2-dimensional parameters, the rest (N-2)
parameters are constant taken from the results of solving a A-problem with N-dimensional parameters
(from step 1).

Step 3. Geometrical Construction of Functions from a A-Problem with 2-Dimensional Param-
eters, Standard Methods, and Corresponding Labels.

Thus, for the first time in domestic and foreign practice, the transition and its geometric illus-
tration from the N-dimensional to the two-dimensional dimension of the function in vector problems
of mathematical programming with the corresponding approximation errors are shown.

6.2.3. Stage 7. Decision-making in the structure of material model at the set priority of criterion

(Algorithm 2. The solution of a vector task with a criterion priority).

The person making decisions, as a rule, is the designer of material.

In the section, the variable Y has been replaced with the variable X.

Step 1. The solution of a vector problem with equivalent criteria. Results of the decision are
presented in section 3.3. The numerical results of solving the vector problem are presented above.

A set of Pareto-optimal points $°cS is between the optimal points X7 X° X3 X° X; X° X5 X°X]
(in the figures X is used instead of Y). We will analyze the set of Pareto points $°cS.

For this purpose, we will connect the auxiliary points:

X1 X3 X5 X5 X1 with the point X°, which conventionally represents the center of the Pareto
set. As a result, four subsets of points X €S9 cS°cS, q = 1,4. A subset of §9c8°cS (S is character-
ized by the fact that the relative estimate 1, > 4,, 43, 4,4, i.e., in the field of the first criterion, S9.
takes precedence over the others. Similar to S35, S$, S3 are subsets of points where the second, third,
and fourth criteria take precedence over the others, respectively.

§° = S{USSLSSLSY.
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The coordinates of all the obtained points and the relative estimates are represented in the two-
dimensional space The coordinates of all the obtained points and the relative estimates are represented
in the two-dimensional space {x; x5} in Figure 6.1. These coordinates are shown in three dimensioned
spaces {x; x5 A} in Figure 6.2, where the third axis A is a relative estimate. The limitations of the set
of Pareto-optimal points are reduced to -0.5 in Figure 6.2. This information is also the basis for further
study of the structure of the Pareto set in Figure 6.1. The decision-maker, as a rule, is the developer
of the system (material structure). If the results of solving a vector problem with equivalent criteria
do not satisfy the decision maker, then the optimal solution is selected from some subset of points

1,589,5%,S%. These subsets of Pareto points are shown in Figure 6.1 as functions f; (X), ..., f4(X).

Step 2. Choice of priority criterion of geK.

For the choice of priority criterion on the display the message about results of the solution of
A-problem in physical and relative units is given:

Criteria (6.50) in Y optimum point:

{h,(Y°) = 364.0,h,(Y°) = 1790.7, h3(Y°) = 194.3,h,(Y°) = 47.5};

A (Y9), k = 1, K- values of relative estimates (6.51):

A (Y?) = 0.7372,1,(Y°) = 0.6087,A5(Y°) = 0.6087,1,(Y°) = 0.6087};

1°=0.6087 is the highest lower level among all relative estimates, measured in relative units:

2° = min (1,(Y°),1,(Y°), 15(Y°), 1,(Y°)) = 0.6087.

From the theory (the Theorem 2) it is known that in an optimum point of X° there are always
two most contradictory criteria: geK and veK for which in the relative unit’s precise equality is
carried out:

A =20q(X9) = (X°),q,p e K, X €,

and for the others it is carried out inequalities: A° < A, (X°),Vk €K, q #p # k

In the model of material (6.30)-(6.35) and the corresponding A-problem (6.42)-(6.48), such cri-
teria are the second and third: A° = A,(X°) = A;(X°)=0.6087, i.e. numerical symmetry is met. This
symmetry will be shown in Figure 6.3, where the functions A, (X) and A5 (X) are presented separately
on the optimal point side X° = {X°,A°}. For comparison, let's similarly present the functions of the
most contradictory criteria A, (X) and A5 (X) separately on the side of the optimal point X° = {X°,1°}.
Figures 6.3 and 6.4 show all the points and data discussed in Figure 6.2.

Typically, of this pair A° = A,(X°) = A;(X°)=0.6087 contradictory criteria, the criterion that
the decision-maker would like to improve is chosen. Such a criterion is called a "priority criterion™,
let's denote it ¢ = 3 € K. This criterion is studied in conjunction with the first criterion g = 1 € K.
We examine these two criteria from the set of K = 4 criteria shown in Figure 6.3.

The following message is displayed on the display:

g=input ('Enter priority criterion (number) of q =) - Entered: q=3.

A-zadacha Vector Optimization three criterion A-zadacha Vector Optimization two criterion: L2, L3
1.5
. . Foa
15 A% AfX ) A2 (%)
A Poc s s o)
. o A .
A3y A%, 286 1 f-2e0) : 2X5)
14 ; |
) e+ .
K a) i € 054 |
€ 05+ 0
©
- ]
o4 |
04 |
8o
0.5 >l X,
30)(3 35 s
60 3
X1 X3

Figure 6.3. Solving A-problems: A, (X), Figure 6.4. Solving A-problems: (A,(X) and

(A5(X). and A, (X) in the three-dimensional A3(X)) in the three-dimensional coordinate

coordinate system x; x, and A, A,(X°) = system x; x, A, A,(X°) = A3(X°)=0.6087.
A3 (X°) = A,(X°)=0.6087
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Step 3. Numerical limits of change of size of a priority of criterion of g=3eK are defined. For
priority criterion of g = 3 € K changes of numerical limits in physical units upon transition from
X° optimum point to the point of X, received on the first step at equivalent criteria are defined. g=3
given about criterion are given for the screen:

f,(X°) = 194.27< f,(X) <210.35 = f,(X;),q € K. (6.61)
In the relative units the criterion of g=3 changes in the following limits:
24(X°) =0.6087<2,(X)<1=2,(X;),q =3 €K. (6.62)

These data it is analysed.

Step 4. Choice of size of priority criterion of qeK. (Decision-making).

On the message: "Enter the size of priority criterion fq=" - we enter, the size of the character-
istic defining structure of material: f, = 200.

Step 5. The relative assessment is calculated.

For the chosen size of priority criterion f, = 200 the relative assessment is calculated:
fq—13 200-194.27
f;—fz’ = 21035-19427 0.7479,

which upon transition from X° point to X3 lies in limits:

24(X°) = 0.6087< 1,(X)<0.7489<4,(X2),q = 3 € K.

Step 6. Let's calculate coefficient of the linear approximation

Assuming the linear nature of change of criterion of £, (X) in (6.61) and according to the rela-
tive assessment of A, (X), using reference methods of the linear approximation, we will calculate a

constant of proportionality between 4,(X°), 4, which we will call p:

Ag—Aq(X°)  0.7489-0.6087 B
T A%~ 1-oeosr 0328, =3€K. (6.63)

Step 7. Let's calculate coordinates of a priority of criteria with dimension of f.
Assuming the linear nature of change of a vector of X9={x; x, x5 x,}, g=3 we will deter-
mine point coordinates with dimension of fq =200, the relative assessment (6.53):

{2 0506 = (11 = X°(D) + p(X3(1) — X°(D),

Aq =

1=0.6596
x2 = X°2) + p(X3(2) ~ X°(2))
x; = X°(3) + p(X;(3) - X°(3)),
Xy =X°(4) + p(Xg(4) —X°(4)} (6.64)
where X° = {x; = 43.9,x, = 49.54,x; = 4.348,x, = 2.2},
X3 ={x; =31.9,x, =59.00,x; = 2.1, x, = 7.0}.
As result of the decision (6.40) we will receive X4 point with coordinates: X9 = {x; =
39.63,x, = 52.91, x5 = 3.54,x, = 3.907}
In the relative units the criterion of g=3 changes in the following limits:
24(X°) =0.546 < 2,(X) <1 = 1,(X;), g =3 €EK.
These data it is analysed.
Step 8. Calculation of the main indexes of a point of X9.
For the received X9 point, we will calculate: all criteria in physical units,
firX) = {f X9), k = 1L,K}, f(X9) = {/1(XT) = 344.3, f,(X9) = 2000, f3(X?) =
199, f,(X?) = 41.7}
all relative estimates of criteria:
e e e
M ={2Lk=1K} r(X9) = W,k =1,K,
kK Jk
(XD = {4, (X1 = 0.5224,1,(X?) = 0.418, 15(X?) = 0.7244, 1,(X?) = 0.7446}.
min relative estimates: min A(X?) = rlggl?(xk(xq)) = 0.418.
P9 = [p3 = 1.3868,p5 = 1.7333,p3 = 1.0,p; = 0.973];
_ Aq&XD

BekTop mpuoputeros P4(X) = {p! = WD k=1K}:
k
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M(XD) = P9 = {p3 « 1,(X9) = 0.7244, p3 * 1,(X9) = 0.7244, p3 * 15(X9) = 0.7244,
D3 * A,(X7) = 0.7244}

Min relative estimates: 1°° = min(p3 A, (X9), p3A,(X9), p3hs(XD), p3ha(X9)) = 0.7244

Similarly, other Pareto points X? = {12, X{}e $° can be obtained.

Analysis of the results obtained. The calculated value is f,(X¢) = 199,q = 3eK,qeK is
usually not equal to the given f; = 200. Af, = |f,(X?) — f4] = 1199 — 200| = 1.0 is determined
by a linear approximation error: Af,q, = 0.5%. If the error Af; = |f,(X?) — fo| = 1199 — 200| =

1.0, measured in physical units or as a percentage Af,q, = Afﬁ * 100 = 0.5%, greater than the spec-
q

ified Af, Afg > Af then proceed to step 2, if Af;, < Af, then the calculation is completed.

In the process of modeling, parametric constraints (6.48) and functions can be changed, i.e., a
certain set of optimal solutions is obtained. From this set of optimal solutions, we choose the final
option (the decision-making process). In our example, the final option includes the parameters: X° =
{X°,2°} = {X° = {x; = 43.9,x, = 49.54, x5 = 4.348,x, = 2.2}, 1° = 0.6087}; parameters of the
technical system at the given priority of the criterion:

g=3: X9 = {x; = 39.63,x, = 52.91,x; = 3.54,x, = 3.907}.

6.3. Block 3. Research, design, geometric interpretation of N-dimensional space into 2-di-
mensional space and selection of optimal parameters of the complex structure of the material in
multidimensional mathematics

Block 3 includes 2 stages: 8 stages of research in relative units: 9 stages of research in physical
units.

6.3.1. Stage 8. Geometric interpretation of the results, solution in relative units when designing
the structure of the material, transition from N-dimensional to two-dimensional space.

The geometric interpretation of the results of the solution in relative units can be presented,
first, by the example of the functions A, (X), 1;(X), secondly, separately on the example of the func-
tions 1, (X) and A5 (X).

1. Investigation of the functions of 4, (X), 43(X) to the maximum.

When studying the parameters of the material structure on the set of S points formed by con-
straints (6.30)-(6.35), the optimal points X7, X5, X3, X, shown in Figure 6.1, are combined into a
contour and represent the set of Pareto-optimal points, S°cS.

A-zadacha Vector Optimization two criterion: L2, L3
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Figure 6.5. Functions 1,(X), 1;(X) and A° in the A-problem in the two-dimensional coordinate
system x; x; and A the geometric interpretation 4, (X), A;(X) in a four-dimensional
coordinate system of x; x, x5 x,.
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The coordinates of these points, as well as the characteristics of the structure of the material in
relative units A, (X), 1,(X), 15(X), 1,(X) are shown in Figure 6.2 in two-dimensional space x; x,
and A, where the third axis A is a relative estimate.

Looking at Figure 6.2, we can imagine the changes in all the functions of A; (X), ..., A,(X) in
four-dimensional space x4, ..., x4. For clarity, let's choose the two most contradictory functions
A,(X), A3(X), shown in Figure 6.3, and represent these functions A, (X), A3(X) in Figure 6.5.

Let's consider Figure 6.5 optimal point, X3. Function A;(X) — in relative units, formed from
the function f5(X) — in physical units with variable coordinates {x; x5} and with constant coordi-
nates {x, = 1790.7, x, = 47.5}, taken from the optimal point X° (6.50). At the point X3 the rela-
tive estimate is A;(X3) = 0.6441 — shown in Figure 6.2 with a black dot.

But we know that the relative estimate of A;(X3) obtained from the function f5(X3) in the
third step, it is equal to one, let's denote it as 13(X3) = 1 —shown in Figure 6.5 with a red dot. The
difference between A53(X3) = 1 and A3(X3) = 0.6441 is an error A= 0.3559 of the transition from a
four-dimensional (and in the general case N-dimensional) to a two-dimensional region. Let us con-
nect the relative estimates A° and A5(X3), lying between the points X°and X3.

Similarly, X3 let's imagine the point X; with corresponding relative estimates of A, (X;)=
1.1530 in {x, x5} coordinates and A5(X;) = 1 obtained in the coordinates {x; x, x5 x,}. A linear
function connecting the points 1° and A5(X;) in relative units, it characterizes the function £, (X)
in relative units in the four-dimensional dimension of the parameters x, ..., x,.

And in general, segments are A5(X3) -1°- 153(X3) represent the geometric interpolation of the
functions £, (X) and f5(X) in relative units in the four-dimensional dimension of the parameters
X1y s Xge

2. Investigation of the functions of 4, (X), A3(X) separately into the maximum and minimum
of the four-dimensional system.

Let's conduct a study of the functions f,(X), represented in relative units: , 1, (X), which is
shown in Figure 6.6.

A-zadacha Vector Optimization criterion: L2
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Figure 6.6. Functions 1,(X) and A° in the A-problem in the two-dimensional coordinate system
X1 x5 and A, the geometric interpretation A, (X) in a four-dimensional coordinate system
X1 X, X3 x4 (highlighted in red).
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To estimate the maximum 2A5(X;) = 1 values of the second criterion in relative units in the four-
dimensional coordinate system {x; x, x5 x,), (highlighted in red) the data obtained in the third step
(6.36) of the matrix A(X*) are used. To estimate the minimum 25(X?) = 0 values of the second crite-
rion in relative units in the four-dimensional coordinate system {x; x, x5 x,}, (highlighted in red) the
data obtained in the third step are used the data obtained in the third step A(X?).

The maximum difference between 15(X;) = 1 (four-dimensional system) and A, (X;) = 1.1530
(two-dimensional system) is an error A=0.1530 of the transition from a four-dimensional (and in the
general case N-dimensional) to a two-dimensional region.

The minimum difference between A5(X9) = 0 (four-dimensional system) and A, (X9) = 0.2290
(two-dimensional system) is an error A = 0.2290 of the transition from a four-dimensional (and in the
general case N-dimensional) to a two-dimensional region.

We will connect the relative estimates with a linear function: 25(X;) A° and 15(X2), which lie
between the points: X; X° and XJ. In general, the linear segments are A5(X;) -1°- 15(X2) represent
the geometric interpolation of the function £, (X) in relative units A, (X) in the four-dimensional di-
mension of the parameters x, ..., x,.

Let's study the function f5(X), represented in relative units: 1;(X), shown in Figure 6.7.

A-zadacha Vector Optimization criterion: L3
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Figure 6.7. Functions, A;(X) and A° in the A-problem in the two-dimensional coordinate system
X1 x5 and A; and the geometric interpretation A5 (X) in a four-dimensional coordinate system,
(highlighted in red).

To estimate the maximum A5(X3) = 1 values of the third criterion in relative units in the four-
dimensional coordinate system {x; x, x5 x,} (highlighted in red) the data obtained in the third step
(6.36) of the matrix A(X*) are used. To estimate the minimum A3(X9) = 0 values of the first criterion
in relative units in the four-dimensional coordinate system {x; x, x5 x,}, (highlighted in red), the
data obtained in the third step (6.36) of the matrix A(X°) are used.

The maximum difference is between A5(X3) = 1 (four-dimensional system) and A;(X3) =

0.6441 (two-dimensional system) is the error A=0.3559 of the transition from a four-dimensional
(and in the general case N-dimensional) to a two-dimensional region.

The minimum difference between A5(X3J) = 0 (four-dimensional system) and A5 (XJ) = 0.5629
(two-dimensional system) is an error A=0.4371 of the transition from a four-dimensional (and in the
general case N-dimensional) to a two-dimensional region.
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Let us connect the relative estimates by a linear function 25(X3) 1° and A5(X39), lying between
the points X3 X° and X2. And in general, the segments are A5 (X3) -1°- 13(X2) represent the geometric
interpolation of the functions f5(X) in relative units A;(X) in the four-dimensional dimension of the
parametersxy, ..., X,.

Thus, for the first time in domestic and foreign practice, the transition and its geometric inter-
pretation from the N-dimensional to the two-dimensional dimension of the function in vector prob-
lems of mathematical programming with the corresponding approximation errors is shown.

6.3.2. Stage 9. Geometric interpretation of the results of the solution of the VPMP — a model of
the structure of the material when designing in a three-dimensional coordinate system in physical
units.

At the fifth step of the algorithm, we calculated the parameters of the optimum point with equiv-
alent  criteriaz  X° = {X°,A°} = {Y° = {x; = 43.9,x, = 49.54, x5 = 4.348,x, = 2.2},\° =
0.6087}, in the two-dimensional coordinate system x;,x, Figure 6.1 and in the three-dimensional
coordinate system x;, x, and A. in relative units in Figures 6.2, 6.3, 6.4 when designing.

Figure 6.5 shows: optimum points X;, X3, with corresponding relative estimates A, (X;) 23(X]),
A3 (X3) 25(X3) and linear functions 1°2%(X;), 1°A53(X3) in relative units, which characterize the
functions f; (X) , f3(X) in the four-dimensional dimension of the parameters x;, ..., x,..

Let us examine and present these parameters for each characteristic of the structure of the ma-
terial (criterion): f;(X), fo(X), f3(X), f,(X) in physical units.

Stage 9.1. Geometric interpretation of the results of the VPMP solution — the first characteristic
of the structure of the material in the design in physical units.

The first characteristic of the structure material f; (X) is formed in 6.1.4:

max h; (X)=323.84 — 2.25y; — 3.49y, + 10.72y; + 13.124y, + 0.0968y,y, —
0.062y,y; — 0.169y,y, + 0.0743y,y; — 0.1y,y, — 0.0036y3y, + 0.0143yZ + 0.0118y2 —
0.2434y2% — 0.5026y2, (6.30)

Let us present a geometric interpretation of the function h, (Y) in physical units with variable
coordinates {y, ys} and with constant coordinates {y, = {49.54,y, = 2.2}, taken from the optimal
point Y° (6.49) in Figure 6.8.

Function f1(X)->max in Vector Optimization problem
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Figure 6.8. Function f; (X) in a two-dimensional coordinate system x; x5 and a geometric
interpretation of the function f; (X) in the coordinate system x; x, x5 x,.
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The coordinates of the maximum point are Y;" = {y; = 46.7636,y; = 8.0} (denoted as
XZlomax in Figure 6.8). The value of the objective function is hi=FX1omax = 387.9.

The coordinates of the minimum point are XY = {x; = 31.9,x; = 2.1} (denoted as X1omin
in Figure 6.8). The value of the objective function is F=FX1lomin = 296.6.

The coordinates of the point are X° = {x; = 43.9,x; = 4.348} (in Figure 6.8 it is indicated as
X100). Value of the objective function f; (X°) =FX100 = 364.0.

Optimum points: X7 with four parameters calculated in step 1 and the criterion value is f;" =
fi(X7) = —387.9; point X? with the value of the criterion £° = f;(X?) = 296.6 — In the figure,
they are denoted (f2(X7), f2(X9).

A linear function connecting the points f; (X°) and £2(X;) in physical units, it characterizes the
function f; (X) in the four-dimensional dimension of the parameters x, ..., x,. And in general, the
segments are f2(X7) - f1(X°) - FL(X? represent the geometric interpolation of the function f£; (X) in
the four-dimensional dimension of the parameters x, ..., x4.

Stage 9.2. Geometric interpretation of the results of the VPMP solution — the second character-
istic of the structure material in the design in physical units.

The second characteristic of the structure material £, (X) is presented in 6.1.4:

min f,(X)=795.72 +23.89x,+30.866x, -25.8586x; -45.0026x, -0.7683x;x, +0.4703x;x;
+0.7472x,x,-0.1283x,x3+0.3266x,x,-0.0112x5x,+0.0398x7+0.0365x% +3.2x2+2.6457x%, (6.32)

The coordinates of the maximum point are X; = {x; = 55.6,x3 = 8.0} (denoted as X2omax
in Figure 6.9). The value of the objective function is F;=FX2omax = 1361.4.

The coordinates of the minimum point are XY = {x; = 31.9,x; = 2.1} (denoted as X2omin
in Figure 6.9). The value of the objective function is FY=FX2omin = 2458.5.

The coordinates of the point are X° = {x; = 43.9,x; = 4.348} (in Figure 6.9 it is indicated as
X200). The value of the objective function is f,(X°) =FX200 = 1790.7.

Optimum points: X5 with four parameters calculated in step 1 and the value of the criterion is
5 = f,(X3) = 1361.4; point X7 with the value of the criterion £} = f,(XJ) = —2458.5 — (in Fig-
ure 6.9 it is indicated as ££(X3), f£(XD)).

Function f2(X)->min in Vector Optimization problem

Figure 6.9. Function f,(X) in a two-dimensional coordinate system £, (X) and a geometric
interpretation of the function £, (X) in the coordinate system x; x, x5 x,4.
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A linear function connecting the points £, (X°) and £2(X;) in physical units, it characterizes the
function £, (X) in the four-dimensional dimension of the parameters x4, ..., x,. And in general, the
segments are £ (X3) - £,(X°) - FA(X?) represent the geometric interpolation of the function £, (X) in
the four-dimensional dimension of the parameters x,, ..., x4.

Stage 9.3. Geometric interpretation of the results of the solution of the VPMP — the third char-
acteristic of the structure of the material in the design in physical units.

The third characteristic of the structure of the material f5(X) is formed in 6.1.4:

max h;(Y)=110.22 + 0.7918y, + 1.73y, — 0.3713y; — 2.20y, — 0.0132y,y, —
0.008y,y; + 0.0193y,y, — 0.0172y,y; + 0.0161y,y, — 0.0006y3y, — 0.0004y? —
0.0002y% + 0.0335y2 + 0.124y2}, (6.31)

Let us present a geometric interpretation of the function f5;(X) in physical units with variable
coordinates {x; x5} and with constant coordinates y, = {49.54,y, = 2.2}, taken from the optimal
point Y° (6.49) in Figure 6.10.

The coordinates of the maximum pointare X3 = {x; = 31.9,x; = 2.1} (in Figure 6.10 denoted
as X3omax). The value of the objective function is F;=FX3omax = 210.3.

The coordinates of the minimum point are X2 = {x, = 78.16,x; = 8.0} (denoted as X3omin
in Figure 6.10). The value of the objective function is £2=FX3omin = 169.26.

The coordinates of the point are X° = {x; = 43.9,x3 = 4.348} (in Figure 6.10 it is indicated
as X300). The value of the objective function is f3(X°) =FX300 = 194.3.

Optimum points: X3 with four parameters calculated in step 1 and the criterion value is f5' =
f3(X3) =—210.3; point X2 with the value of the criterion £ = f3(X9) = 169.26 —
(in Figure 6.8 denoted as f£(X3), f£(X9).

Function f3(X}->max in Vector Optimization problem
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Figure 6.10. Function f3(X) in a two-dimensional coordinate system x,; x5 and a geometric
interpretation of the function f5(X) in the coordinate system x; x, x5 x4.

A linear function connecting the points f;(X°) and ££(X3) in physical units, it characterizes
the function f5(X) in the four-dimensional dimension of the parameters x; x, x3 x,.

And in general, the segments are f2(X;) - f3(X°) - fA(X3) represent the geometric interpola-
tion of the functionf;(X) in the four-dimensional dimension of the parameters x; x, x3 x,.
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Stage 9.4. Geometric interpretation of the results of the solution of the VPMP — the fourth
characteristic of the structure of the material in the design in physical units.

The fourth characteristic of the structure of the material f,(X). is presented in 6.1.4:

max h,(Y)=21.004 — 0.0097y, — 0.841y, — 0.4326y; + 1.1723y, + 0166y,y, +
0.085y,y; — 0.0001y;y, + 0.0523y,y; + 0.0002y,y, + 0.0006y5y, — 0.0022y? +
0.0035yZ + 0.006y% — 0.0311y2}}, (6.33)

Let us present a geometric interpretation of the function f,(X) in physical units with variable
coordinates {x; x5} and with constant coordinates y, = {49.54,y, = 2.2}, taken from the optimal
point Y° (6.49) in Figure 6.11.

The coordinates of the maximum point are X; = {x; = 36.70,x3; = 2.1} (in Figure 6.11 de-
noted as X4omax). The value of the objective function is F;=FX4omax = 30.714.

The coordinates of the minimum point are X = {x; = 62.71,x; = 8} (denoted as X4omin in
Figure 6.11). The value of the objective function is F,;=FX4omin = —73.62.

The coordinates of the point are X° = {x; = 43.9,x; = 4.348} (in Figure 6.11 it is indicated
as X400). The value of the objective function is f,(X°) - FX400 = 47.5.

Optimum points: X, with four parameters calculated in step 1 and the value of the criterion is
i = f(X3) = 30.714; point X2 with the value of the criterion £ = f,(X2) = —73.62 — The figure

shows (f{*(Xz), f4 (X3).
Function f4{X)-=>min in Vector Optimization problem
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Figure 6.11. Function f,(X) in a two-dimensional coordinate system x; x5 and a geometric
interpretation of the function f, (X) in the coordinate system x; x, x5 x,4.

A linear function connecting the points £, (X°) and £2(X;) in physical units, it characterizes the
function £, (X) in the four-dimensional dimension of the parameters x, ..., x,4.

And in general, the segments are £ (X;) - f2(X°) - f2(XD) represent the geometric interpola-
tion of the function £, (X) in the four-dimensional dimension of the parameters x;, ..., x,4.

Taken together, the software version gives the following results: optimum point - X;

characteristics (criteria) — F(X°) = {f;(X?), f,(X°), f5(X°), f,(X°)};

relative evaluations — A(X°) = {A;(X?), A, (X?), A5(X°), Ae(X°)};

the maximum relative estimate 1, such that 1.°< A, (X9),k = 1, K.

the optimum point with the priority of the qgth criterion is X9;

characteristics (criteria) — F(X7) = {f;(X9), f,(X9), f3(X?), f,(XD};
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relative evaluations — A(X°) = {A; (X?), A, (X9), A3(X9), L, (XD};
the maximum relative estimate 1°%, such that A°’<p{ & (X9),k = LK.

Conclusion on the section. The problem of developing mathematical methods of vector opti-
mization and making an optimal decision based on them in a complex structure of the material based
on a certain set of experimental data and functional characteristics is one of the most important tasks
of system analysis and design. The paper develops a methodology for design automation by: building
a mathematical model of the material under conditions of certainty and uncertainty; development of
methods for solving a vector problem and selection of optimal material parameters for a variety of
characteristics.

7. Comparison of applied methods of multidimensional mathematics with methods of artifi-
cial intelligence.

Let us evaluate the applied methods of multidimensional mathematics - {axiomatics of
Mashunin Yu.K., principles of optimality and methods for solving vector problems of mathematical
(convex) programming}, presented in the third and fourth sections of this work, and compare them
with the methods of artificial intelligence. Using the theory of vector optimization, we obtained for
an engineering system (in particular, a technical system, the structure of a material):

optimum point - X? = (x?,j = 1, N};

characteristics (criteria) — F(X°) = {f,,(X°),k = 1,K};

relative  evaluations  — MXO) = (M (X°),k=1,K}, which lie  within
{0 <2, (X°)<1(100%),k = 1,K}, and is easily translated into physical data.

Can these results be obtained by artificial intelligence, which usually functions on the principle
of brute force? The answer is, "No." Artificial intelligence can only get an approximate result that a
person has set, but why this result is better than other results should also be evaluated by a person
based on intuition.

Thus, the developed theory of vector optimization can be the mathematical apparatus of com-
putational intelligence of artificial intelligence.

Conclusions

The problem of developing mathematical methods of multidimensional mathematics in appli-
cation to the vector problem of optimization and making an optimal decision on their basis of the
structure of the material based on a certain set of functional characteristics and experimental data is
one of the most important tasks of system analysis and design of the structure of the material.

The paper develops a methodology for design automation by: building a mathematical model
of an engineering system under conditions of certainty and uncertainty; development of methods for
solving a vector problem. The construction of a mathematical and numerical model for the selection
of optimal parameters of a complex technical system and material of a complex structure and their
implementation by a variety of characteristics is presented
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