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МНОГОМЕРНАЯ МАТЕМАТИКА. МОДЕЛИРОВАНИЕ СТРУКТУРЫ  

МАТЕРИАЛА И ИНЖЕНЕРИЯ: ИНТЕРПРЕТАЦИЯ N-МЕРНОЙ СИСТЕМЫ  

В ДВУХМЕРНУЮ И ВЫБОР ОПТИМАЛЬНЫХ ПАРАМЕТРОВ  

MULTIDIMENSIONAL MATHEMATICS. MATERIAL STRUCTURE MODELING  

AND ENGINEERING: INTERPRETING AN N-DIMENSIONAL SYSTEM INTO  

A TWO-DIMENSIONAL SYSTEM AND SELECTING THE OPTIMAL PARAMETERS  

 

Аннотация. Цель работы состоит в компьютерной инженерии и материаловедение: мо-

делирование, интерпретация N-мерной в двухмерную и выбор оптимальных параметров ин-

женерной системы на базе многомерной математики (раздел: теории и методов векторной оп-

тимизации). В рамках теории векторной оптимизации представлены принципы оптимальности 

решения векторных задач при равнозначных критериях и при заданном приоритете критерия 

https://rdcu.be/bhZ8i. (Работа "Vector optimization with equivalent and priority criteria" Springer 

Nature распространяется бесплатно.). На основе теории разработаны конструктивные методы 

решения задач векторной оптимизации, которые позволяют оценивать экспериментальные 

данные, во-первых, при равнозначных критериях, во-вторых, при моделировании инженерных 

систем с заданным приоритетом критерия при принятии оптимального решения. Практическая 

направленность показана при автоматизированном проектировании на базе векторной опти-

мизации инженерных систем, которым относятся структура материала. Для этой цели разра-

ботано программное обеспечение решения векторных задач нелинейного (ВЗНП) программи-

рования. Программное обеспечение решения ВЗНП используются при цифровой трансформа-

ции принятия оптимальных решений в инженерных задачах. Численные примеры представ-

лены цифровой трансформацией принятия оптимальных решений по структуре материала.   

При принятии оптимальных решений в инженерных системах разработано: построение 

исходных данных (техническое задание) для моделирования структуры материала; преобра-

зование математической модели структуры материала в условиях неопределенности в модель 

в условиях определенности; принятие оптимального решения (которое включает параметры и 

характеристики материала) с равнозначными критериями; принятие оптимального решения с 

заданным приоритетом критерия. 

Abstract. The purpose of the work is in computer engineering and materials science: modeling, 

interpretation of N-dimensional into two-dimensional and selection of optimal parameters of an en-

gineering system based on multidimensional mathematics (section: theory and methods of vector op-

timization). Within the framework of the theory of vector optimization, the principles of optimality 

of solving vector problems with equivalent criteria and with a given priority of the criterion are pre-

sented https://rdcu.be/bhZ8i. (The work "Vector optimization with equivalent and priority criteria» 

by Springer Nature is distributed free of charge.). On the basis of the theory, constructive methods 

for solving vector optimization problems have been developed, which make it possible to evaluate 

experimental data, firstly, with equivalent criteria, and secondly, when modeling engineering systems 

with a given criterion priority when making an optimal decision. Practical orientation is shown in 

computer-aided design based on vector optimization of engineering systems, which include the struc-

ture of the material. For this purpose, software for solving vector problems of nonlinear programming 

(VPNP) has been developed. VPNP solution software is used in the digital transformation of optimal 

decision-making in engineering problems. Numerical examples are presented by the digital transfor-

mation of optimal decision-making on the structure of the material.  To make the optimal decision in 

engineering systems (on the example of the structure of the material), the following has been devel-

http://em.rdcu.be/wf/click?upn=lMZy1lernSJ7apc5DgYM8UuVK2DBnTY7J0F4f8VYnos-3D_E7GXjwAkq5VvFJ1c-2FBIDPrOP8Z8A6FSxiek2J3pnMVu6jQS1hJJ-2FU5UPfFRKkwBNIHdCmtiE26-2BQlyx-2BMozTnuip1S6VAiSMUfcUwyaD94rZMMzChza77Ppk6LfVGrj5HLx9SAUiDpJuM1eAS3ckyoMqZlgianxLCuG3qUiLIMNOnVsrnh3Ay5IAtz2ysEAqyM58rLDhjmcuxWGu5a8PrortYUC6qdUQhepPyud8i-2BNq5kIv9C6nmHakH019-2Be0rF4L5Pu8WaP7jiXc0-2BezGJQ-3D-3D
http://em.rdcu.be/wf/click?upn=lMZy1lernSJ7apc5DgYM8UuVK2DBnTY7J0F4f8VYnos-3D_E7GXjwAkq5VvFJ1c-2FBIDPrOP8Z8A6FSxiek2J3pnMVu6jQS1hJJ-2FU5UPfFRKkwBNIHdCmtiE26-2BQlyx-2BMozTnuip1S6VAiSMUfcUwyaD94rZMMzChza77Ppk6LfVGrj5HLx9SAUiDpJuM1eAS3ckyoMqZlgianxLCuG3qUiLIMNOnVsrnh3Ay5IAtz2ysEAqyM58rLDhjmcuxWGu5a8PrortYUC6qdUQhepPyud8i-2BNq5kIv9C6nmHakH019-2Be0rF4L5Pu8WaP7jiXc0-2BezGJQ-3D-3D
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oped: the construction of initial data (technical specification) for modeling the structure of the mate-

rial; transformation of a mathematical model of the structure of a material under conditions of uncer-

tainty into a model under conditions of certainty; making an optimal decision (which includes param-

eters and characteristics of the material) with equivalent criteria; making an optimal decision with a 

given priority criterion. 

Ключевые слова: Инженерная система, Теория многомерной математики, Аксиоматика 

векторной оптимизации, Методология моделирования, Математическое и программное обес-

печение, сложная техническая система структура материала. 

Keywords: Engineering System, Theory of Multidimensional Mathematics, Axiomatics of 

Vector Optimization, Modeling Methodology, Mathematical and Software, Complex Technical Sys-

tem Material Structure. 

 

1. Introduction. 

The study of the development of engineering systems and materials science, in particular, has 

shown that their development depends on a certain set of functional characteristics that must be taken 

into account at the design stage. Analysis of the functioning of engineering systems showed that 

improvement in one of the characteristics leads to the deterioration of other characteristics. To im-

prove the functioning of the engineering system as a whole, it is necessary to improve all character-

istics as a whole, [1, 2]. 

The mathematical model of such (engineering) systems is represented by multi-criteria opti-

mization problems and, as a result, the solution of multi-criteria (vector) problems of mathematical 

programming is required. Research on this class of problems began more than a hundred years ago 

in Pareto V. [3]. Further research on multi-criteria optimization was carried out both at the theoret-

ical level by foreign [4, 5, 6, 34-39] and Russian authors [13, 14, 15-33], and on solving practical 

problems first in the field of Economics [15, 16, 44], and then in the field of engineering systems 

[7-12, 16-33, 44]. 

The purpose of the work is to analyze, build a mathematical model of the structure of the ma-

terial, study the processes of digital transformation of the development of engineering systems in 

conditions of certainty and uncertainty, the choice of optimal parameters of the structure of the ma-

terial based on the theory and methods of vector optimization. 

Within the framework of the theory of vector optimization, the principles of optimality of solv-

ing vector problems with equivalent criteria and with a given priority of the criterion are presented 

and constructive methods for solving vector optimization problems are shown. For modeling and 

digital transformation of engineering systems, vector problems of nonlinear programming were used, 

which were solved under conditions of certainty and uncertainty. 

To achieve this goal, the work presents two areas of research: mathematical, software and the 

applied field. In the field of mathematical and software, the characteristic is presented, the analysis 

and study of vector optimization problems is carried out, [13, 14, 15-33, 44].  Within the framework 

of the theory of vector optimization, axiomatics and principles of optimality for solving vector prob-

lems with equivalent criteria and with a given priority of the criterion are presented. 

On the basis of the principles of optimality, constructive methods for solving vector optimiza-

tion problems have been developed, which make it possible to make an optimal decision, firstly, with 

equivalent criteria, and secondly, with a given priority of the criterion. In the study of the problem of 

vector optimization, a numerical solution of the vector problem of nonlinear (convex) programming 

with four homogeneous criteria. 

In the applied part of the work, in organizational terms, the process of modeling and simulating 

the structure of the material is presented in the form of a methodology: "Methodology for choosing 

the optimal parameters of engineering systems under conditions of certainty and uncertainty". (Tech-

nical systems [16-32], technological processes [16, 22], materials [18, 44]),  

The tasks that arise in the process of making an optimal decision on the selection of optimal 

parameters of complex engineering systems include three types sequentially. 1 type. Solution of a 

vector problem with equivalent criteria. The result obtained is the basis for further research of the 

system. In this case, the method of solving a vector problem with equivalent criteria is used.  
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If the result obtained satisfies the decision-maker (decision-maker - designer), then it is taken 

as a basis. If the solution does not satisfy the decision-maker, then we move on to the 2nd type (direct 

task) related to changing the parameters; or the 3rd type of solving vector problems (Inverse problem: 

"What will be the parameters of complex technical systems with given characteristics). 

In organizational terms, the process of modeling and simulation of a complex engineering sys-

tem, which includes three types of the above tasks, is formed in the form of a methodology: "Meth-

odology for Selecting the Optimal Parameters of Complex Engineering Systems in Conditions of Cer-

tainty and Uncertainty", [18, 44]. 

 The methodology includes three blocks, divided into a number of stages: Block 1. Formation 

of technical specifications, transformation of uncertainty conditions into certainty; Block 2. Method-

ology of the process of optimal decision making (selection of optimal parameters) in an engineering 

system based on vector optimization (the process of simulation of an engineering system). Block 3. 

Research, design, geometric interpretation of the transition from N-dimensional space and selection 

of optimal parameters of a complex engineering system (material structure) in multidimensional 

mathematics.  

The implementation of all blocks of the methodology is shown by a numerical example (mate-

rial structure).   

2. Problem statement. Building a Mathematical Model of Material Structure under Con-

ditions of Certainty and Uncertainty. 

Chemical composition of material of a product is defined (on unit of volume, weights) by the 

percentage maintenance of some set of components of material which are equal in the sum to hundred 

percent. The composition of material, is characterized by a particular set of the functional character-

istics which include mechanical and physical and chemical characteristics of materials. One group of 

properties (the functional characteristics) of material is characterized by the fact that it is desirable to 

receive them on the numerical value as much as possible (for example, durability), other group of 

properties is characterized by the fact that is desirable to receive them on the numerical value less as. 

Improvement on one of these characteristics leads another to deterioration. In general, it is required 

to pick up such composition of material that all properties of material were as it is possible better in 

total.  

2.1. Mathematical model of structure of material  

Discusses the composition of the material, any product, technical system that depends on a 

number of material component: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑉}, where 𝑽 is the set of components of the material, 

𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑉 is the number of components of which it can be made (fabricated) material, 𝑦𝑉 

is the size as a percentage vth of a material component, each of which lies in the given limits: 

𝑦𝑣
𝑚𝑖𝑛𝑦𝑣 𝑦𝑣

𝑚𝑎𝑥, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅,                                                (2.1) 

where 𝑦𝑣
𝑚𝑖𝑛, 𝑦𝑣

𝑚𝑎𝑥, ∀𝑣 ∈ 𝑉 are the lower and upper limits of the change in the vector of the material 

components. 

∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100%,                                                     (2.2)   

the sum of all the components of the material is one hundred percent. 

The composition of material is estimated by set 𝐾 physical properties of material:  

𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅},                                               (2.3) 

which functionally depend on design data of 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑉̅̅ ̅̅ ̅}𝑇; 

k is the index of a type of physical properties of material, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, where 𝐾 - number of types 

of properties (the functional characteristics) of material, we will present them in the form a vector – 

functions. 

𝐻(𝑌) is a vector function (vector criterion) having 𝐾 a component function:  

𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}. 

The set 𝑲 consists of sets of 𝑲1, a component of maximization and 𝑲2 of minimization; 

 𝑲 = 𝑲1𝑲2;  

𝐻1(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ }  is maximizing vector-criterion, 𝐾1 – number of criteria, and 

𝐾11, 𝐾1
̅̅ ̅̅ ̅̅  is a set of maximizing criteria. Let's further assume that 𝐻1(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1

̅̅ ̅̅ ̅̅ }  is the 

continuous concave functions (we will sometimes call them the maximizing criteria); 
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𝐻2(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ } is vector criterion in which each component is minimized, 

𝐾2𝐾1 + 1, 𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 1, 𝐾2
̅̅ ̅̅ ̅̅    - a set of minimization criteria, 𝐾2 – number. We assume that ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2

̅̅ ̅̅ ̅̅  

is the continuous convex functions (we will sometimes call these the minimization criteria), i.e.: 

 𝐾1 ∪ 𝐾2  =  𝑲, 𝐾1𝑲, 𝑲𝟐𝑲. 

We use characteristics of the material  𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}   

as criterion, and change limits imposed on each type of components as parametrical restrictions. 

We will present the mathematical model of material solving in general a problem of the choice of the 

optimal design solution (the choice of optimum structure of material) in the form of a vector problem 

of mathematical programming: 

𝑂𝑝𝑡 𝐻(𝑌) = {max 𝐻1(𝑌) = {max ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅  ,                                (2.4) 

   min 𝐻2(𝑌) = {min ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }},                                           (2.5) 

at restrictions      𝐺(𝑋)  𝐵,                                                                                             (2.6) 

               ∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100% ,                                                         (2.7) 

   𝑌𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑌𝑣

𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,                                                   (2.8) 

where 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑉̅̅ ̅̅ ̅} is a vector of the operated variables (a material component) from (2.1);  

𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} is vector criterion which each function submits the characteristic 

(property) of material which is functionally depending on a vector of variables Y;  

𝐺(𝑌) = {𝑔1(𝑌), … , 𝑔𝑀(𝑌)}𝑇 is a vector function of the restrictions imposed on structure of 

material, 𝑴 – a set of restrictions.  

It is supposed that the functions 𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} are differentiated and convex, 

𝐺(𝑌) = {𝑔𝑖(𝑌), 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅  }𝑇 are continuous, and (2.6)-(2.8) set of admissible points of S set by re-

strictions are not empty and represents a compact: 

𝑺 = {𝑋Î𝑹𝑛|𝐺(𝑋) ≤ 0, 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥} ≠ ∅  -                                            (2.9) 

The relations (2.4)-(2.8) form mathematical model of material. It is required to find such vector 

of the 𝑌𝑜 ∈ 𝑺 parameters at which each component (characteristic) the vector - functions 𝐻1(𝑌) ac-

cepts the greatest possible value, and a vector - functions 𝐻2(𝑌) accepts minimum value: 

                                                      𝐻1(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ }, 

𝐻2(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }.                                        (2.10)  

In this article a research of design properties of material is considered in statics. However, 

structure of material can be considered in dynamics (for example, at change of external temperature 

for some period of time). For this purpose, it is possible, to use differential-difference methods of 

transformation [4] and to conduct research for a small discrete time term∆𝑡 ∈ 𝑻. In set the mathemat-

ical model of material (2.4)-(2.8) can be treated as systems approach to a material research.  

2.2. Creation of mathematical model of structure of material in the conditions of certainty 

and uncertainty  

At creation of mathematical model of material (2.4)-(2.8), as well as for technical system [20-

26], conditions are possible: certainty and uncertainty. 

2.2.1. Creation of mathematical model of material in the conditions of certainty 

Conditions of a certainty are characterized by the fact that the functional dependence of each 

characteristic (property) of material and restrictions on design components of material is known. 

For creation of the functional dependence, we perform the following works.  

1. We form a set of all functional characteristics (properties) of material 𝑲. The size of the 

characteristic we will designate ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. We define a set of all components of material 𝑽 on 

which these characteristics depend. We will present sizes of parameters in the form of a vector of 

𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑉̅̅ ̅̅ ̅}. We give the verbal description of characteristics of material. 

2. We conduct research of the physical processes proceeding in material. For this purpose, we 

use fundamental laws of physics: model operation of magnetic, temperature profiles; laws of con-

servation of energy, movements etc. We establish informational and functional connection of char-

acteristics of material and its parameters:  

𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}.  

3. We define the functional restrictions:  

   ℎ𝑘
𝑚𝑖𝑛 ≤ ℎ𝑘 ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅, or 𝐻𝑚𝑖𝑛 ≤ 𝐻 ≤ 𝐻𝑚𝑎𝑥; 
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and parametrical restrictions: 

 𝑦𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣

𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅, or 𝑌𝑚𝑖𝑛 ≤ 𝑌 ≤ 𝑌𝑚𝑎𝑥. 

The sum of all components of material is equal to hundred percent: ∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100%. 

4. As a result we will construct mathematical model of material in the form of a vector problem 

of mathematical programming:  

𝑂𝑝𝑡 𝐻(𝑌) = {max 𝐻1(𝑌) = {max ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ },                         (2.10) 

   min 𝐻2(𝑌) = {min ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }},                                    (2.11) 

 𝐻𝑚𝑖𝑛 ≤ 𝐻 ≤ 𝐻𝑚𝑎𝑥,                                                (2.12) 

 at restrictions    ∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100% ,                                 (2.13) 

   𝑦𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣

𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,                                         (2.14) 
The problem (2.10)-(2.14) is adequate problem (2.4)-(2.8). 

2.2.2. Creation of mathematical model of material in the conditions of uncertainty 

Conditions of uncertainty are characterized by the fact that there is no sufficient information on 

the functional dependence of property of material from structure of components. In this case the pi-

lot studies are conducted.  

For the given number of compositions of the materials:         

𝑌𝑖 = {𝑦𝑖𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ , 

the corresponding set of properties are defined: 

𝐻(𝑌𝑖) = {ℎ𝑘(𝑌𝑖), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ . 

Taking into account it the matrix of experiments on research of structure of material takes a 

form: 

I = ‖
𝑌1 = {𝑦1𝑣, 𝑣 = 1, 𝑉1

̅̅ ̅̅ ̅̅ } ℎ1(𝑌1) … ℎ𝐾(𝑌1)
…

𝑌𝑀 = {𝑦𝑀𝑣, 𝑣 = 1, 𝑉𝑀
̅̅ ̅̅ ̅̅ ̅} ℎ1(𝑌𝑀) … ℎ𝐾(𝑌𝑀)

‖.                             (2.15) 

where the 𝑣Î𝑽 column represents a numerical value 𝑣th of a material component as a percentage, 

𝑣 = 1, 𝑉 ̅̅ ̅̅ ̅̅ , and the kÎK column represents a numerical value of 𝑘th of property of material, 𝑘 =
1, 𝐾̅̅ ̅̅ ̅. The problem of the person, the making decision, (the designer) consists in the choice of such 

alternative which would allow to receive "in the greatest measure (optimum) result arranging it" 

[18, 20]. The set of criteria (characteristics) of K is subdivided into two subsets of 𝑲 =
𝑲1𝑲2, 𝑲1 𝑲, 𝑲2 𝑲. 

 𝑲1 is a subset of characteristics which numerical values it is desirable to receive as it is pos-

sible above:  

𝐼1(𝑌𝑖) = {ℎ𝑘(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ } → 𝑚𝑎𝑥.  

𝑲2 are subsets of principal specifications which numerical values it is desirable to receive, 

as low as possible:  

𝐼2(𝑌𝑖) = {ℎ𝑘(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ } → 𝑚𝑖𝑛. 

The solution of a problem of a decision making on structure of material (2.15) it is in es-

sence close to the solution of a vector problem of mathematical programming which in the condi-

tions of uncertainty will take a form: 

𝑂𝑝𝑡 𝐻(𝑌) = {max 𝐼1(𝑌) = {max ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ },                  (2.16) 

   min 𝐼2(𝑌) = {min ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }},                            (2.17) 

at restrictions ℎ𝑘
𝑚𝑖𝑛(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ) ≤ ℎ𝑘 ≤ ℎ𝑘

𝑚𝑎𝑥(𝑌𝑖, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,             (2.18) 

               ∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100% ,                                               (2.19) 

   𝑦𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣

𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,                                          (2.20) 

where 𝑌𝑖 = {𝑦𝑖𝑗 , 𝑗 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅  is a vector of operated variable (constructive parameters);  

𝐻(𝑌𝑖) = {𝐼1(𝑌𝑖), 𝐼1(𝑌𝑖)} is vector criterion which each component submits the characteristic 

(property) of material which is functionally depending on the size of discrete value of a vector of 

variables 𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ; 𝑀 is set of discrete values of a vector of the variables 𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ;  

in (2.18) ℎ𝑘
𝑚𝑖𝑛(𝑌𝑖) ≤ ℎ𝑘 ≤ ℎ𝑘

𝑚𝑎𝑥(𝑌𝑖), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅
 is a vector function of the restrictions imposed 

on function of material of a product, 𝑦𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣

𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅ are parametrical restrictions. 
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2.3. Creation of mathematical model of material in the conditions of certainty and uncertainty 

in the form of a vector problem 

In actual life of a condition of a certainty and uncertainty are combined. The material model 

also reflects these conditions. Let's unite models (2.10)-(2.14) and (2.16)-(2.20). As a result, we will 

receive material model in the conditions of certainty and uncertainty in total in the form of a vector 

problem of mathematical programming: 

𝑂𝑝𝑡 𝐻(𝑌) = {max 𝐻1(𝑌) = {max ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                                            (2.21) 

max 𝐼1(𝑌) = {max ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},                              (2.22) 

   min 𝐻2(𝑌) = {min ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                                              (2.23) 

   min 𝐼2(𝑌) = {min ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾2
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},                             (2.24) 

at restrictions     ℎ𝑘
𝑚𝑖𝑛 ≤ ℎ𝑘 ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,                                                        (2.25) 

 ∑ 𝑦𝑣
𝑉
𝑣=1 = 100% ,                                                                                 (2.26) 

   𝑦𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣

𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,                                                               (2.27) 
where Y - a vector of the operated variables (design data of material);  

𝐻(𝑌) = {𝐻1(𝑌) 𝐼1(𝑌) 𝐻2(𝑌) 𝐼2(𝑌)} is vector criterion which each component represents a vec-

tor of criteria (characteristics) of material which functionally depend on values of a vector of variables  

𝑌; 𝐾1
𝑑𝑒𝑓, 𝐾2

𝑑𝑒𝑓
(definiteness), 𝐾1

𝑢𝑛𝑐, 𝐾2
𝑢𝑛𝑐 (uncertainty) - the set of criteria of max and min created in 

the conditions of a certainty and uncertainty; in (2.25) vector function of the restrictions imposed on 

material functioning under production conditions, (2.27) parametrical restrictions. 

3. Introduction to Multidimensional Mathematics: Analysis, Vector Problem of Mathe-

matical Programming, Theory, Axioms and Axiomatic Methods, Principles of Optimality 

Mathematical models of the structure of material (2.21)-(2.27), as well as models of technical 

systems, technological processes and dynamical systems are represented by vector problems of math-

ematical programming (VPMP), [16 - 21, 44]. Further development of the study of works on the 

theory of vector optimization led to the formation of "Multidimensional Mathematics".  

3.1. Analysis of the Development of Modern Mathematics.   

The analysis of modern mathematics was carried out in accordance with [1, pp. 560 – 563].    

Mathematics is the science of quantitative relations and spatial forms of the real world. Mathe-

matics, as a science, became possible after the accumulation of sufficiently large factual material, 

arose in ancient Greece in the 6th – 5th centuries BC, in accordance with [1] four periods. 

1. The origin of mathematics. In the early stages of development, counting objects of existence 

led to the creation of the simplest concepts of arithmetic of natural numbers. 

2. The period of elementary mathematics. The study of the objects of existence led to the cre-

ation of the simplest concepts of arithmetic calculations, the determination of areas, volumes, etc. 

3. The period of creation of the mathematics of variables. In the 17th century, a new period in 

the development of mathematics began. The concept of function, which determines the interrelation 

of variables (parameters) of the object under study, comes to the fore. The study of variables and 

functional dependencies leads further to the basic concepts of mathematical analysis, to the concept 

of limit, derivative, differential, and integral. An analysis of infinitesimals is created in the form of 

differential and integral calculations, which makes it possible to relate finite changes in variables to 

their behavior on the decision (function) being made. The basic laws of mechanics and physics are 

written in the form of differential equations, and the task of integrating these equations is one of the 

most important tasks of mathematics. 

4. Modern mathematics. All of the branches of mathematical analysis created in the 17th and 

18th centuries continued to evolve into the 19th, 20th, and 21st centuries. As the basic apparatus of 

the new fields of mechanics and mathematical physics, the theory of ordinary differential equations, 

partial differential equations, and computational mathematics is being intensively developed. The 

problems of finding the best solution in the problems of controlling physical or mechanical systems, 

described by differential equations, led to the creation of the theory of optimal control. 

In general, the process of development of mathematics shows that when solving mathematical 

problems, there was a study and analysis of a separate function (one-dimensional), depending on a 
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certain set of variables (parameters) of the object or system under study.   (For more details, see [1, 

pp. 560 – 563]). 

In real life, the object under study, the system, in its functioning (development), is characterized 

by a certain set of functional characteristics that depend on the same parameters of the system. 

Hence, the problem of multidimensionality of the objects and systems under study has become a 

general scientific one. 

To solve the problem of multidimensionality, we will present a vector (multidimensional) op-

timization problem and consider the theory (axiomatics, principles of optimality) of its solution, [15, 

29, 44]. 

3.2. A vector problem of mathematical programming  

A vector problem in mathematical programming (VPMP) is a standard mathematical-program-

ming problem including a set of criteria, which, in total, represent a vector of criteria.  

It is important to distinguish between uniform and non-uniform VPMP:  

A uniform maximizing VPMP is a vector problem in which each criterion is directed towards 

maximizing;  

A uniform minimizing VPMP is a vector problem in which each criterion is directed towards 

minimizing;  

A non-uniform VPMP is a vector problem in which the set of criteria is shared between two 

subsets (vectors) of criteria (maximization and minimization respectively), e.g., non-uniform VPMP 

are associated with two types of uniform problems.  

According to these definitions, we will present a vector problem in mathematical programming 

with non-uniform criteria [6, 20, 22] in the following form: 

𝑂𝑝𝑡 𝐹(𝑋) = {max 𝐹1(𝑋) = {max 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ ,                     (3.1) 

                     min 𝐹2(𝑋) = {min 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }},                     (3.2) 

                      𝐺(𝑋)  𝐵,                                                                   (3.3) 

                      𝑋  0,                                                                        (3.4) 

where 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} is a vector of material variables, N-dimensional Euclidean space of RN, 

(designation j= 𝑗 = 1, 𝑁̅̅ ̅̅ ̅  is equivalent to j = 1,...,N); 

𝐹(𝑋) is a vector function (vector criterion) having K – a component functions, (K - set power 

K), 𝐹(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}. The set К consists of sets of K1, a component of maximization and 

К2 of minimization; К=K1K2 therefore we enter the designation of the operation "opt," which in-

cludes max and min;  

𝐹1(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ } is maximizing vector-criterion, K1 – number of criteria, and 

𝐾11, 𝐾1
̅̅ ̅̅ ̅̅  is a set of maximizing criteria (a problem (3.1), (3.3), (3.4) represents VPMP with the ho-

mogeneous maximizing criteria). Let's further assume that 𝑓𝑘(𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅  is the continuous concave 

functions (we will sometimes call them the maximizing criteria); 

𝐹2(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ } is vector criterion in which each component is minimized, 

𝐾2𝐾1 + 1, 𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 1, 𝐾2
̅̅ ̅̅ ̅̅    - a set of minimization criteria, K2 – number, (the problems (3.2)-( 3.4) are 

VPMP with the homogeneous minimization criteria). We assume that 𝑓𝑘(𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅  is the contin-

uous convex functions (we will sometimes call these the minimization criteria), i.e., 

 K1K2 = K, K1K, K2K.                                                      (3.5) 

𝐺(𝑋) 𝐵, 𝑋  0 is standard restrictions, 𝑔𝑖(𝑋) 𝑏𝑖 , 𝑖 = 1, . . . , 𝑀  where bi - a set of real numbers, 

and 𝑔𝑖(𝑋) are assumed continuous and convex. 

𝑺 = {𝑋Î𝑹𝑛|𝑋0, 𝐺(𝑋)  𝐵, 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥} ≠ ∅,                              (3.6) 

where the set of admissible points set by restrictions (3.3)-( 3.4) is not empty and represents a com-

pact. The vector minimization function (criterion) 𝐹2(𝑋)can be transformed to the vector maximiza-

tion function (criterion) by the multiplication of each component of 𝐹2(𝑋) to minus unit. The vector 

criterion of 𝐹2(𝑋) is injected into VPMP (3.1)-( 3.4) to show that, in a problem, there are two subsets 

of criteria of 𝑲1, 𝑲𝟐 with, in essence, various directions of optimization. 

We assume that the optimum points received by each criterion do not coincide for at least two 

criteria. If all points of an optimum coincide among themselves for all criteria, then we consider the 

decision trivially. 
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3.3. The theory of vector optimization 

The theory of vector optimization is aimed at solving vector problems of mathematical pro-

gramming (3.1) - (3.4) with uniform and non-uniform criteria.  The theory of vector optimization 

includes theoretical foundations: axiomatics, principles of optimality, and methods for solving vector 

problems, firstly, with equivalent criteria and, secondly, with a given priority of the criterion. 

In accordance with this definition, the "Theory of Vector Optimization" includes the following 

sections. Basic theoretical concepts and definitions that will be used in the construction of axiomatics 

(axiomatics of Y.K. Mashunin), principles of optimality and methods for solving problems of vector 

optimization. The axiomatics of Y.K. Mashunin is divided into axiomatics, principles of optimality 

and methods for solving vector problems, firstly, with equivalent criteria and secondly, with a given 

priority of the criterion.   

The concept of solving vector optimization problems with equivalent criteria. The concept of 

vector optimization with criterion priority. Symmetry in Vector Problems of Mathematical Program-

ming: Research, Analysis. 

Collectively, the theory of vector optimization represents the mathematical apparatus of mod-

eling and making the optimal decision of the "object of decision-making".  

The "object of decision-making" is: the social system, the economic and technical system. The 

mathematical apparatus allows you to choose any point from the set of points optimal according to 

Pareto, and show its optimality. We presented axiomatics, the principle of optimality and methods 

for solving problems of vector optimization (3.1) - (3.4) with equivalent criteria and a given priority 

of criteria. [6, 20]. For simplicity of research, the criteria and limitations of VPMP (3.1) - (3.4) are 

represented by polynomials of the second degree, i.e. convex vector problems are considered, which 

also include vector linear programming problems. Convex VPMP are characterized by the property 

that an optimum point exists and there is only one such point (Weierstrass Theorem). 

3.4. Theoretical Foundations: Axioms and Axiomatic Methods. 

An axiom is a statement that does not require logical proof. On the basis of these statements 

(initial assumptions), one or another theory is built.  

The axiomatic method is a method of constructing a scientific theory, in which the theory is 

based on some initial assumptions called the axioms of the theory. As a result, all other provisions of 

the theory are obtained as logical consequences of axioms [41, 2]. 

In mathematics, the axiomatic method originated in the works of ancient Greek geometers. An 

example of the axiomatic method is the ancient Greek scientist Euclid, whose axioms were laid down 

in his famous work "Elements".  

The axiomatic method was further developed in the works of D. Hilbert in the form of the so-

called method of system formalism. The general scheme of building an arbitrary formal system ("S") 

includes:  

1. The language of the system ("S"), including the alphabet – this is a list of elementary symbols; 

the rules of formation (syntax) on which the formulas "S" are built. 

2. Axioms of the "S" system, which represent a certain set of formulas. 

3. Rules for the withdrawal of the "S" system [41]. 

In the application to the solution of the problem of vector optimization (multidimensional math-

ematics), axiomatics is divided into two sections: 1. Axiomatics of solving the vector optimization 

problem with equivalent criteria; 2. Axiomatics of solving the vector optimization problem with a 

given priority of criteria. Only with the construction of the initial axiomatics is it possible in the future 

to construct the principle of optimality and the resulting algorithms for solving vector problems of 

mathematical programming. 

4. Theory, axiomatics, the principle of optimality and methods for solving vector optimi-

zation problems: equivalent criteria and with a Criterion Priority 

4.1 Theory, axiomatics, the principle of optimality and methods for solving vector optimiza-

tion problems: equivalent criteria  
The axiomatics of vector optimization with equivalent criteria, as well as the theoretical axio-

matics recommended by D. Hilbert [41, p. 111], includes three sections: 1) the language of the system 

in the form of definitions of the normalization of criteria and relative evaluation; 2) the axiomatics of 

the equality of criteria in the vector optimization problem; 3) the principle of optimality of the solution 
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of the vector problem, on the basis of which a constructive method for solving the vector optimization 

problem with equivalent criteria is formed. 

4.1.1. System language: Normalization of criteria, relative assessment 

Definition 1. Normalizing of the criterion. 

Normalizing criteria (mathematical operation: the shift plus rationing) presents a unique display 

of the function 𝑓𝑘(𝑋) ∀𝑘 ∈ 𝐾, in a one-dimensional space of R1(the function 𝑓𝑘(𝑋) ∀𝑘 ∈ 𝐾 repre-

sents a function of transformation from a N-dimensional Euclidean space of 𝑹𝑵 in 𝑹𝟏). To normalize 

criteria in vector problems, linear transformations will be used: 

𝑓𝑘(𝑋) =  𝑎𝑘𝑓𝑘
′(𝑋) + 𝑐𝑘∀𝑘 ∈ 𝐾 , or 

𝑓𝑘(𝑋) =  (𝑓𝑘
′(𝑋) + 𝑐𝑘)/𝑎𝑘  ∀𝑘 ∈ 𝐾,                                      (4.1) 

where 𝑓𝑘
′(𝑋) , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ - aged (before normalization) value of criterion; 𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ - the normal-

ized value, 𝑎𝑘, 𝑐𝑘   - constants.  

Normalization of criteria (4.1) 𝑓𝑘(𝑋) =  (𝑓𝑘
′(𝑋) + 𝑐𝑘)/𝑎𝑘𝑘ÎК is a simple (linear) invariant 

transformation of a polynomial, as a result of which the structure of the polynomial remains un-

changed. In the optimization problem, the normalization of criteria 𝑓𝑘(𝑋) =  (𝑓𝑘
′(𝑋) + 𝑐𝑘)/𝑎𝑘𝑘Î𝐾 

does not affect the result of the solution. Indeed, if the convex optimization problem is solved: 

𝒎𝒂𝒙𝑿⋴𝑺 𝑓(𝑋), then at the optimum point 𝑋∗Î 𝑆: 
𝑑𝑓(𝑋∗)

d𝑋
= 0.                 (4.2) 

In the general case (including the normalization of the criterion (1)), the problem is solved: 

𝒎𝒂𝒙𝑿⋴𝑺 (𝑎𝑘𝑓𝑘
′(𝑋) + 𝑐𝑘),                                                             (4.3) 

then at the optimum point 𝑋∗Î 𝑆:  
𝑑(𝑎𝑘𝑓(𝑋∗)+𝑐𝑘)

d𝑋
= 𝑎𝑘

𝑑(𝑓(𝑋∗))

d𝑋
+

𝑑(𝑐𝑘)

d𝑋
= 0.                                (4.4) 

The result is identical, i.e. the optimum point 𝑋𝑘
∗, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅ is the same for non-normalized 

and normalized problems. 

Definition 2. Relative evaluation of the function (criterion).   

In the vector problem (3.1)-(3.4), normalize (4.1) of the form: 

𝜆𝑘(𝑋) =
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 ,𝑘 Î 𝑲,                                         (4.5) 

𝜆𝑘(𝑋) is the relative estimate of a point 𝑋 ∈ 𝑺 kth criterion 𝑓𝑘(𝑋) - kth criterion at the point 𝑋 ∈ 𝑺; 

𝑓𝑘
∗ - value of the kth criterion at the point of optimum 𝑋𝑘

∗, obtained in vector problem (3.1) -

(3.4) of individual kth criterion; 𝑓𝑘
0 is the worst value of the kth criterion (ant optimum) at the point 

𝑋𝑘
0 (Superscript 0 - zero) on the admissible set S in vector problem (3.1)-(3.4);  

the task at max (3.1), (3.3), (3.4) the value of 𝑓𝑘
0 is the lowest value of the kth criterion  

𝑓𝑘
0 = 𝑚𝑖𝑛𝑋⋴𝑆𝑓𝑘(𝑋) ∀𝑘 ∈ 𝐾1 , 

and task min (3.2), (3.3), (3.4) the value of 𝑓𝑘
0  is the greatest value of the kth criterion:  

𝑓𝑘
0 = 𝑚𝑎𝑥𝑋⋴𝑆𝑓𝑘(𝑋) ∀𝑘 ∈ 𝐾2.  

The relative estimate of the 𝜆𝑘(𝑋) ∀𝑘 ∈ 𝐾 is first, measured in relative units;  

secondly, the relative assessment of the 𝜆𝑘(𝑋) ∀𝑘 ∈ 𝐾: on the admissible set is changed from 

zero in a point of  𝑋𝑘
0: ∀𝑘 ∈ 𝑲 𝑙𝑖𝑚

𝑋͢→𝑋𝑘
0

𝜆𝑘(𝑋) = 0, to the unit at the point of an optimum of 𝑋𝑘
∗: 

 ∀𝑘 ∈ 𝑲 𝑙𝑖𝑚
𝑋͢→𝑋𝑘

∗
𝜆𝑘(𝑋) = 1:  

∀𝑘 ∈ 𝑲 0 ≤ 𝜆𝑘(𝑋) ≤ 1, X ∈ 𝑺.                                                                                   (4.6) 

As a result of this normalization, all the criteria of the VPMP are (3.1)-(3.4) are comparable in 

relative units, which allows comparing them with each other, using criteria for joint optimization.   

Definition 3. The operation of comparing relative estimates of a function (criterion) with each 

other. 

Since any function (criterion) is represented in the relative estimates of the functions 

𝜆𝑘(𝑋) ∀𝑘 ∈ 𝐾, which lie within the range of (4.6) ∀𝑘 ∈ 𝑲 0 ≤ 𝜆𝑘(𝑋) ≤ 1, it is possible to compare 

the relative estimates by numerical value. For comparison, the "subtraction" operation is used. If two 

functions (criteria) measured in the relative estimates 𝜆𝑘=1(𝑋) and 𝜆𝑘=2(𝑋) ∀𝑘 ∈ 𝐾 are compared, 

then three situations are possible: 

the first, when 𝜆𝑘=1(𝑋) > 𝜆𝑘=2(𝑋); 
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the second, when 𝜆𝑘=1(𝑋) = 𝜆𝑘=2(𝑋);                                    (4.7) 

the third, when 𝜆𝑘=1(𝑋) < 𝜆𝑘=2(𝑋).                                        (4.8) 

The first and third situations are explored in Section 6. 

This section 5 examines the second situation. 

4.1.2. Axiomatics of Vector Optimization with Equivalent Criteria 

Axiom 1. On the equivalence of criteria at an admissible point of a vector problem of mathe-

matical programming. 

In of vector problems of mathematical programming two criteria with the indexes 𝑘 ∈ 𝑲, 𝑞 ∈
𝑲 shall be considered equivalent in 𝑋 ∈ 𝑺 point if relative estimates on kth and qth to criterion are 

equal among themselves in this point, i.e. 𝜆𝑘(𝑋) = 𝜆𝑞(𝑋), 𝑘, 𝑞 ∈ 𝑲.  

Explanation. If at point 𝑋 ∈ 𝑺 the functions (criteria) are equal to:  

𝜆𝑙(𝑋) = 0,45 𝑙 ∈ 𝑲 and 𝜆𝑞(𝑋) = 0,45, 𝑞 ∈ 𝑲 (i.e., 45% of its optimal value, which in relative 

units is equal to 1), then such criteria are not "equal" to each other, but are equivalent in their numer-

ical value. And each of them carries its own functional meaning, which can be obtained using the 

normalization of criteria (4.5). 

Definition 4. Definition of a minimum level among all relative estimates of criteria.  

The relative level  in a vector problem represents the lower assessment of a point of XÎS 

among all relative estimates of 𝜆𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅: 

∀𝑋 ∈ 𝑺 𝜆 ≤ 𝜆𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                                                      (4.9) 

the lower level for performance of a condition (4.9) in an admissible point of 𝑋Î𝑺 is defined by a 

formula: 

𝑋Î𝑆  =  𝒎𝒊𝒏𝑘⋴𝐾𝜆𝑘(𝑋).                                                          (4.10) 

Ratios (4.9) and (4.10) are interconnected. They serve as transition from operation (4.10) of 

definition of min to restrictions (4.9) and vice versa. 

The level  allows to unite all criteria in a vector problem one numerical characteristic of   

and to make over her certain operations, thereby, carrying out these operations over all criteria meas-

ured in relative units. The level  functionally depends on the X ∈ 𝑺 variable, changing X. 

We can change the lower level - . From here we will formulate the rule of search of the opti-

mum decision. Therefore, by changing 𝑋, we can change everything 𝜆𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ and, accord-

ingly, the lower level   =  𝒎𝒊𝒏𝑘⋴𝐾𝜆𝑘(𝑋), which is a characteristic of a multidimensional (multi-

functional) system.  

Explanation. The value of the relative estimate 𝑘Î𝐾 𝜆𝑘(𝑋) is a characteristic of a one-dimen-

sional system, and the value of the minimum relative level  = 𝒎𝒊𝒏𝑘⋴𝐾𝜆𝑘(𝑋) is a characteristic of 

multidimensional mathematics. 

4.1.3. The principle of optimality of solving a multidimensional (vector) optimization problem 

with equivalent criteria. 

Definition 5. The principle of an optimality of solving a multidimensional (vector) optimiza-

tion problem with equivalent criteria. 

The vector problem of mathematical programming at equivalent criteria is solved, if the point 

of 𝑋𝑜 ∈ 𝑺 and a maximum level of o (the top index o - optimum) among all relative estimates such 

that is found  


𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲𝜆𝑘(𝑋)                                                          (4.11) 

 Using interrelation of expressions (4.9) and (4.10), we will transform a maximin problem 

(4.11) to an extreme problem: 


𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺 λ                                                                                (4.12)  

at restriction 𝜆 ≤ 𝜆𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅.                                                             (4.13) 

-problem (4.12)-(4.13) has (N+1) dimension, as a consequence of the result of the solution of 

-problem (4.12)-(4.13) represents an optimum vector of 𝑿𝒐Î𝑅𝑁+1, (𝑁 + 1)  which component an 

essence of the value of the 
𝑜
, i.e. 𝑿𝒐 = {𝑥1

𝑜,  𝑥2
𝑜, … , 𝑥𝑁

𝑜 , 𝑥𝑁+1
𝑜 },  thus 𝑥𝑁+1

𝑜 = 
𝑜
, and (N+1) a com-

ponent of a vector of Xo selected in view of its specificity. 
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The received a pair of  {𝑜, 𝑋𝑜} = 𝑿𝒐 characterizes the optimum solution of -problem (4.12)-

(4.13) and according to vector problem of mathematical programming (3.1)-(3.4) with the equivalent 

criteria, solved on the basis of normalization of criteria and the principle of the guaranteed result.  

We will call in the optimum solution of 𝑿𝒐 = {𝑜, 𝑋𝑜}, Xo - an optimal point, and o - a maximum 

level. An important result of the algorithm for solving vector problems (3.1)-(3.4) with equivalent 

criteria is the following theorem. 

Theorem 1. The theorem of the two contradictory criteria in the vector problem of mathemat-

ical programming with equivalent criteria.  

In convex vector problems of mathematical programming (3.1)-(3.4) at the equivalent criteria 

which is solved on the basis of normalization of criteria and the principle of the guaranteed result, in 

an optimum point of 𝑿𝒐 = {𝑜, 𝑋𝑜}  two criteria are always - denote their indexes 𝑞Î𝑲, 𝑝Î𝑲 (which 

in a sense are the most contradiction of the criteria 𝑘 = 1, 𝐾̅̅ ̅̅ ̅), for which equality is carried out: 

λ𝑜 = λ𝑞(𝑋𝑜) = λ𝑝(𝑋𝑜), 𝑞, 𝑝 ∈ 𝑲, 𝑋 Î 𝑺,                                          (4.14) 

and other criteria are defined by inequalities: 

λ𝑜 ≤ λ𝑘(𝑋𝑜), ∀𝑘 ∈ 𝑲, 𝑞 ≠ 𝑝 ≠ 𝑘.                                                 (4.15) 

For the first time, the proof of Theorem 1 is presented in [15, p. 22], and later it is repeated in 

[9, p.234]. Along with the fact that the point 𝑋𝑜 is the optimal solution of the VPMP. 

4.1.4. A constructive method for solving the vector optimization problem with equivalent cri-

teria.  

To solve of the vector problems of mathematical programming (3.1)-(3.4) the methods based 

on axiomatic of the normalization of criteria and the principle of the guaranteed result, which follow 

from Axiom 1 and the principle of optimality 1. The constructive method for solving a vector opti-

mization problem with equivalent criteria includes two blocks: the 1st block "System Analysis" is 

divided into three steps; 2nd block "Optimal decision-making", which includes two steps: construc-

tion of the problem and its solution. 

Block 1. System analysis. 

Step 1. The problem (3.1)-(3.4) by each criterion separately is solved, i.e. for ∀𝑘 ∈ 𝑲1 is solved 

at the maximum, and for ∀𝑘 ∈ 𝑲2 is solved at a minimum. As a result of the decision, we will receive: 

𝑋𝑘
∗ - an optimum point by the corresponding criterion, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; 𝑓𝑘

∗ = 𝑓𝑘(𝑋𝑘
∗) – the criterion size kth 

in this point, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Step 2. We define the worst value of each criterion on S: 𝑓𝑘
0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. For what the problem 

(3.1)-(3.4) for each criterion of 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅  on a minimum is solved:  

𝑓𝑘
0 = min 𝑓𝑘(𝑋), 𝐺(𝑋)  𝐵, 𝑋  0, 𝑘 = 1, 𝐾1

̅̅ ̅̅ ̅̅ .  

The problem (3.1)-(3.4) for each criterion 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅   maximum is solved:  

𝑓𝑘
0 = max 𝑓𝑘(𝑋), 𝐺(𝑋)  𝐵, 𝑋  0, 𝑘 = 1, 𝐾2

̅̅ ̅̅ ̅̅ . 

As a result of the decision, we will receive: 𝑋𝑘
0 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} - an optimum point by the 

corresponding criterion, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; 

 𝑓𝑘
0 = 𝑓𝑘(𝑋𝑘

0) – the criterion size kth a point, 𝑋𝑘
0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Step 3.  The system analysis of a set of points, optimum across Pareto, for this purpose in opti-

mum points of 𝑋∗ = {𝑋𝑘
∗, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, are defined sizes of criterion functions of F(X*) and relative 

estimates (X*), λ𝑘(𝑋) =
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 ,𝑘Î𝑲: 

 𝐹(𝑋∗) = {𝑓𝑘(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} = |

𝑓1(𝑋1
∗), … , 𝑓𝐾(𝑋1

∗)
…

𝑓1(𝑋𝐾
∗ ), … , 𝑓𝐾(𝑋𝐾

∗ )
|,                            (4.16) 

(𝑋∗) = {𝜆𝑞(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} = |

𝜆1(𝑋1
∗), … , 𝜆𝐾(𝑋1

∗)
…

𝜆1(𝑋𝐾
∗ ), … , 𝜆𝐾(𝑋𝐾

∗ )
|.                           (4.17) 

Any relative score (4.17) lies within the range of 0 ≤ λ𝑘(𝑋) ≤ 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅.  

From the results of the system analysis (4.16)-(4.17) the problem arises: To find such an (optimal) 

point at which all relative estimates are: 𝜆𝑞(𝑋), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅ were close to unity. To solve this problem 

is aimed λ-problem. 



Раздел журнала: Математические и естественные науки 

Направление исследования: Физико-математические науки 

 

                              Международный научный журнал "Вектор научной мысли" №4(21) Апрель 2025 

www.vektornm.ru | 8 (812) 905 29 09  |  info@vektornm.ru 

Block 2. Making the optimal decision in the VPMP. It includes two steps - 4, 5. 

Step 4. Creation of the -problem.  

Creation of -problem is carried out in two stages:  

initially built the maximine problem of optimization with the normalized criteria which at the 

second stage will be transformed to the standard problem of mathematical programming called -

problem. 

For construction maximine a problem of optimization we use definition 2 - relative level:  

𝑋Î𝑺    = 𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑋). 

The bottom  level is maximized on XÎS, as a result we will receive a maximine problem of 

optimization with the normalized criteria.  

λ𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑋).                                             (4.18) 

At the second stage we will transform a problem (4.18) to a standard problem of mathematical 

programming: 

λ𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺 ,                →               λ𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺 ,                (4.19) 

 − λ𝑘(𝑋) ≤ 0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,      →             −
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0  0, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,            (4.20) 

𝐺(𝑋)  𝐵, 𝑋  0,             →                  𝐺(𝑋)  𝐵, 𝑋  0,                   (4.21) 

where the vector of unknown of X has dimension of 𝑁 + 1: 𝑋 = {, 𝑥1, … , 𝑥𝑁}. 

Step 5. Solution of -problem. 

-problem (4.19)-( 4.21) is a standard problem of convex programming and for its decision 

standard methods are used. As a result of the solution of -problem it is received: 

 𝑿𝒐 = {𝑿𝒐, 𝒐} - an optimum point;                                                                        (4.22) 

𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  are values of the criteria in this point;                                        (4.23) 

𝑘(𝑋𝑜) =
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 =  1, 𝐾̅̅ ̅̅ ̅  are sizes of relative estimates;                               (4.24) 

o - the maximum relative estimates which is the maximum bottom level for all relative esti-

mates of 𝑘(𝑋𝑜),  or the guaranteed result in relative units. o guarantees that all relative estimates 

of 𝑘(𝑋𝑜) more or are equal o :  

𝑘(𝑋𝑜)𝒐, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ or 𝒐
𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑋𝑜 Î 𝑺,                                         (4.25) 

and according to the theorem 1 point of 𝑋𝑜 = {𝒐, 𝑥1, … , 𝑥𝑁} is optimum across Pareto. 

4.2. Theory, axiomatics, the principle of optimality and methods for solving vector optimiza-

tion problems: with a Criterion Priority  
Definition 3 states that if we compare two functions (criteria) measured in relative estimates 𝜆𝑘=1(𝑋) 

and  𝜆𝑘=2(𝑋) ∀𝑘 ∈ 𝐾, then three situations are possible. The second situation, when 𝜆𝑘=1(𝑋) = 𝜆𝑘=2(𝑋) is 

investigated in Section 3.2 (equivalent criteria). Situations: the first, when 𝜆𝑘=1(𝑋) > 𝜆𝑘=2(𝑋), and the third, 

when  𝜆𝑘=1(𝑋) < 𝜆𝑘=2(𝑋), are explored in this section. Such situations are defined as tasks with the priority 

of the criterion. 

For development of methods of the solution of problems of vector optimization with a priority 

of criterion we use definitions as follows:  

Priority of one criterion of vector problems, with a criterion priority over other criteria;  

Numerical expression of a priority;  

The set priority of a criterion;  

the lower (minimum) level from all criteria with a priority of one of them;  a subset of points 

with priority by criterion (Axiom 2); the principle of optimality of the solution of problems of vector 

optimization with the set priority of one of the criteria, and related theorems. For more details see 

[17, 43, 44].   

4.2.1. Axiomatics of solving a Vector Optimization Problem with a given criterion priority 

The language of the axiomatics system for solving a vector problem with a given criterion 

priority includes definitions: 1) Priority of one criterion over another; 2) The numerical value of the 

priority of the criterion; 3) The lowest level of the criterion among all relative evaluations with the 

priority of the criterion. 

Definition 6. About the priority of one criterion over the other. 
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The criterion of 𝑞 ∈ 𝑲 in the vector problem of Equations (3.1)-(3.4) in a point of 𝑋 Î 𝑺 has 

priority over other criteria of 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, and the relative estimate of λ𝑞(𝑋) by this criterion is greater 

than or equal to relative estimates of k(X) of other criteria, i.e.: 

λ𝑞(𝑋) ≥ λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                                               (4.26) 

and a strict priority for at least one criterion of 𝑡 ∈ 𝑲, 

λ𝑞(𝑋) > λ𝑘(𝑋), 𝑡 ≠ 𝑞, and for other criteria of λ𝑞(𝑋) ≥ λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘 ≠ 𝑡 ≠ 𝑞.      (4.27) 

Introduction of the definition of a priority of criterion qÎK in the vector problem of Equations 

(3.1)-(3.4) executed the redefinition of the early concept of a priority. Earlier the intuitive concept of 

the importance of this criterion was outlined, now this "importance" is defined as a mathematical 

concept: the higher the relative estimate of the qth criterion compared to others, the more it is im-

portant (i.e., more priority), and the highest priority at a point of an optimum is 𝑋𝑘
∗, ∀𝑞 ∈ 𝑲. 

From the definition of a priority of criterion of 𝑞 ∈ 𝑲 in the vector problem of Equations (3.1)-

(3.4), it follows that it is possible to reveal a set of points 𝑺𝑞 𝑺 that is characterized by   

λ𝑞(𝑋) ≥ λ𝑘(𝑋),𝑘  𝑞,𝑋 Î 𝑺𝑞. However, the answer to whether a criterion of 𝑞 ∈ 𝑲 at a 

point of the set 𝑺𝑞 has more priority than others do remains open. For clarification of this question, 

we define a communication coefficient between a couple of relative estimates of q and k that, in total, 

represent a vector:  

𝑃𝑞(𝑋) = {𝑝𝑘
𝑞

(𝑋)  𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑞 Î 𝑲 𝑋 Î 𝑺𝑞.                                  (4.28) 

Definition 7. About numerical expression of a priority of one criterion over another. 

In the vector problem of Equations (3.1) and (3.4), with priority of the qth criterion over other 

criteria of 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, for 𝑋 Î 𝑺𝑞, and a vector of 𝑃𝑞(𝑋) which shows how many times a relative 

estimate of λ𝑞(𝑋), 𝑞 ∈ 𝑲, is more than other relative estimates of λ𝑘(𝑋), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅, we define a nu-

merical expression of the priority of the qth criterion over other criteria of 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ as: 

 𝑃𝑞(𝑋) = {𝑝𝑘
𝑞(𝑋) =

λ𝑞(𝑋)

λ𝑘(𝑋)
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑝𝑘

𝑞(𝑋) 1,𝑋 Î 𝑺𝑞 𝑆, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,𝑞 Î 𝑲.        (4.29) 

Such a ratio 𝑝𝑘
𝑞(𝑋) =

λ𝑞(𝑋)

λ𝑘(𝑋)
. let us call the numerical expression of the priority of the q-th crite-

rion over the rest of the criteria 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Definition 7a. On a given numerical expression of the priority of one criterion over. 

In the vector problem of Equations (3.1)–(3.4) with a priority of criterion of 𝑞 ∈ 𝑲 for  ∀𝑋 ∈ 𝑺, 

vector 𝑃𝑞 = {𝑝𝑘
𝑞

, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} is considered to be set by the person making decisions (i.e., decision-

maker) if everyone is set a component of this vector. Set by the decision-maker, component 𝑝𝑘
𝑞
, from 

the point of view of the decision-maker, shows how many times a relative estimate of λ𝑞(𝑋), 𝑞 ∈ 𝑲 

is greater than other relative estimates of λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. The vector of 𝑝𝑘
𝑞

, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, is the numerical 

expression of the priority of the qth criterion over other criteria of 𝑘 = 1, 𝐾̅̅ ̅̅ ̅: 

𝑃𝑞(𝑋) = {𝑝𝑘
𝑞(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑝𝑘

𝑞(𝑋) 1,𝑋 Î 𝑺𝑞 𝑆, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,𝑞 Î 𝑲.             (4.30) 

The vector problem of Equations (3.1)–(3.4), in which the priority of any criteria is set, is called 

a vector problem with the set priority of criterion. The problem of a task of a vector of priorities arises 

when it is necessary to determine the point 𝑋𝑜 ∈ 𝑺 by the set vector of priorities. 

In the comparison of relative estimates with a priority of criterion of q Î K, as well as in a task with 

equivalent criteria, we define the additional numerical characteristic of  which we call the level.                            

Definition 8. About the lower level among all relative estimates with a criterion priority.  

The  level is the lowest among all relative estimates with a priority of criterion of 𝑞 ∈ 𝑲 such 

that: 

  𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑞 ∈ 𝑲, ∀𝑋 ∈ 𝑺𝑞 𝑆;                               (4.31) 

The lower level for the performance of the condition in Equation (4.31) is defined as: 

 = 𝑚𝑖𝑛𝑘⋴𝐾𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑞 ∈ 𝑲,𝑋 Î 𝑺𝑞  𝑆.                                   (4.32) 

Equations (4.31) and (4.32) are interconnected and serve as a further transition from the opera-

tion of the definition of the minimum to restrictions, and vice versa. In Section 4, we gave the defini-

tion of a Pareto optimal point 𝑋𝑜 ∈ 𝑺 with equivalent criteria. Considering this definition as an initial 

one, we will construct a number of the axioms dividing an admissible set of S into, first, a subset of 
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Pareto optimal points S°, and, secondly, a subset of points 𝑺𝑞 𝑺, 𝑞 Î 𝑲, with priority for the qth 

criterion.  

4.2.2. Axiomatics of Criteria Priority in the Vector Optimization Problem.  

Axiom 2. On a subset of points prioritized by criterion in a vector optimization problem. 

In the vector problems of mathematical programming of Equations (3.1)–(3.4), the subset of 

points 𝑺𝑞 𝑺 is called the area of priority of criterion of 𝑞 ∈ 𝑲 over other criteria, if  

∀𝑋 ∈ 𝑺𝑞 𝑘Î𝑲 λ𝑞(𝑋) λ𝑘(𝑋), 𝑞  𝑘. 

This definition extends to a set of Pareto optimal points 𝑺𝑜 that is given by the following defi-

nition. 

Axiom 2a. About a subset of points, priority by criterion, on Pareto's great number in a vector 

problem.  

In a vector problem of mathematical programming the subset of points 𝑺𝒒
𝒐𝑺𝑜 S is called the 

area of a priority of criterion of 𝑞 ∈ 𝑲 over other criteria, if  

X Î 𝑆𝑞
𝑜 𝑘 Î 𝐾 λ𝑞(𝑋) λ𝑘(𝑋), 𝑞  𝑘. 

In the following we provide explanations. 

Axiom 2 and 2а allow the breaking of the vector problems of mathematical programming in 

Equations (3.1)–(3.4) into an admissible set of points S, including a subset of Pareto optimal points, 

𝑺𝑜 𝑺, and subsets: 

One subset of points 𝑺′ 𝑺 where criteria are equivalent, and a subset of points of S' crossed 

with a subset of points S°, allocated to a subset of Pareto optimal points at equivalent criteria 

 𝑺𝑜𝑜 = 𝑺′ ∩ 𝑺𝑜. As will be shown further, this consists of one point of 𝑋𝑜 ∈ 𝑺, i.e.  

𝑋𝑜 = 𝑺𝑜𝑜 = 𝑺′ ∩ 𝑺𝑜, 𝑺′Î𝑺, 𝑺𝑜𝑺;                                               (4.33) 

 "K" subsets of points where each criterion of 𝑞 = 1, 𝐾̅̅ ̅̅ ̅ has a priority over other criteria of 𝑘 =
1, 𝐾̅̅ ̅̅ ̅, 𝑞  𝑘,  and thus breaks, first, sets of all admissible points S, into subsets 𝑺𝑞 𝑺, 𝑞 = 1, 𝐾̅̅ ̅̅ ̅ and, 

second, a set of Pareto optimal points, S°, into subsets 𝑺𝒒
𝒐𝑺𝑞 𝑺, 𝑞 = 1, 𝐾̅̅ ̅̅ ̅. This yields:  

𝑺′U(⋃ 𝑺𝑞
𝑜

𝑞⋴𝐾 ) ≡  𝑺°, 𝑺𝒒
𝒐 𝑺°  𝑺, 𝑞 = 1, 𝐾̅̅ ̅̅ ̅.                                   (4.34) 

We note that the subset of points 𝑺𝒒
𝒐, on the one hand, is included in the area (a subset of points) 

of priority of criterion of 𝑞 ∈ 𝑲 over other criteria: 𝑺𝒒
𝒐 𝑺𝑞  𝑺, and, on the other, in a subset of 

Pareto optimal points𝑺𝒒
𝒐 𝑺°  𝑺. 

Axiom 2 and the numerical expression of priority of criterion (Definition 5) allow the identifi-

cation of each admissible point of 𝑋 Î 𝑺 (by means of vector:  

𝑃𝑞(𝑋) = {𝑝𝑘
𝑞(𝑋) =

λ𝑞(𝑋)

λ𝑘(𝑋)
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, to form and choose:                               (4.35) 

a subset of points by priority criterion Sq, which is included in a set of points S, ∀𝑞 ∈ 𝑲 

𝑋Î𝑺𝑞 𝑺, (such a subset of points can be used in problems of clustering, but is beyond this article); 

a subset of points by priority criterion 𝑺𝒒
𝒐, which is included in a set of Pareto optimal points 

S°, 𝑞Î𝐾, 𝑋Î𝑺𝒒
𝒐𝑺°. 

Thus, full identification of all points in the vector problem of Equations (3.1)–(3.4) is executed 

in sequence as: 

Set of ad-

missible points of 

𝑋Î 𝑺 → 

Subset of 

points, optimum 

across Pareto, 

𝑋Î 𝑺𝑜 𝑺 → 

Subset of 

points, optimum 

across Pareto 

𝑋Î𝑺𝒒
𝒐 𝑺𝑜 𝑺 → 

Separate point 

of а 𝑋Î𝑺  
𝑋Î𝑺𝒒

𝒐 𝑺𝑜 𝑺 

This is the most important result which allows the output of the principle of optimality and to 

construct methods of a choice of any point of Pareto's great number. 

4.2.3. Principle of optimality 2. The solution of a vector problem with the set criterion priority 

in the VPMP 

Definition 9. Principle of optimality 2. The solution of a vector problem with the set criterion 

priority in the VPMP.  

The vector problem of Equations (3.1)–(3.4) with the set priority of the qth criterion of 

 𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ is considered solved if the point X° and maximum level ° among all rela-

tive estimates is found such that: 
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λ𝑜 =  𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑞 Î 𝑲.                                             (4.36) 

Using the interrelation of Equations (4.31) and (4.32), we can transform the maximine problem 

of Equation (4.36) into an extreme problem of the form:  

λ𝑜  =  𝒎𝒂𝒙𝑿⋴𝑺 ,                                                          (4.37) 

at restriction    𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅.                                                (4.38) 

We call Equations (4.37) and (4.38) the -problem with a priority of the qth criterion. 

The solution of the -problem is the point 𝑿𝒐 = {𝑋𝑜, 𝑜}. This is also the result of the solution 

of the vector problem of Equations (3.1)-(3.4) with the set priority of the criterion, solved on the basis 

of normalization of criteria and the principle of the guaranteed result. 

In the optimum solution 𝑿𝒐 = {𝑋𝑜,𝑜}, X°, an optimum point, and °, the maximum bottom 

level, the point of X° and the ° level correspond to restrictions of Equation (5.8), which can be 

written as:  λ𝑜 𝑝𝑘
𝑞

λ𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

These restrictions are the basis of an assessment of the correctness of the results of a decision 

in practical vector problems of optimization. 

From Definitions 1 and 2, "Principles of optimality", follows the opportunity to formulate the 

concept of the operation “opt”. 

Definition 9. Mathematical operation "opt" in the VPMP. 

In the vector problems of mathematical programming of Equations (3.1)–(3.4), in which "max" 

and "min" are part of the criteria, the mathematical operation "opt" consists of the definition of a point 

X° and the maximum ° bottom level to which all criteria measured in relative units are lifted: 

°  λ𝑘(𝑋°) =  
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,                                               (4.39) 

i.e., all criteria of λ𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, are equal to or greater than the maximum level of ° (therefore 

° is also called the guaranteed result). 

Theorem 2. The theorem of the most inconsistent criteria in a vector problem with the set 

priority. If in the convex vector problem of mathematical programming of Equations (3.1)–(3.4) the 

priority of the qth criterion of 𝑝𝑘
𝑞

, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,𝑞 Î 𝑲 over other criteria is set, at a point of an optimum 

𝑋𝑜 ∈ 𝑺 obtained on the basis of normalization of criteria and the principle of guaranteed result, there 

will always be two criteria with the indexes 𝑟 Î 𝑲, 𝑡 Î 𝑲, for which the following strict equality 

holds: 

° = 𝑝𝑘
𝑟λ𝑟(𝑋°) = 𝑝𝑘

𝑡  λ𝑡(𝑋°), 𝑟, 𝑡,Î 𝑲,                                        (4.40) 

and other criteria are defined by inequalities: 

°  𝑝𝑘
𝑞

(𝑋°), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,𝑞 Î 𝑲, 𝑞  𝑟  𝑡 .                                    (4.41) 

Criteria with the indexes 𝑟 Î 𝑲, 𝑡 Î 𝑲 for which the equality of Equation (4.40) holds are 

called the most inconsistent. 

Proof. Similar to Theorem 2 [19, 20]. 

We note that in Equations (4.40) and (4.41), the indexes of criteria r, 𝑡 Î 𝑲 can coincide with 

the 𝑞 Î 𝑲 index. 

Consequence of Theorem 1, about equality of an optimum level and relative estimates in a vec-

tor problem with two criteria with a priority of one of them. 

In a convex vector problem of mathematical programming with two equivalent criteria, solved 

on the basis of normalization of criteria and the principle of the guaranteed result, at an optimum 

point Xo equality is always carried out at a priority of the first criterion over the second: 

λ𝑜 = λ1(𝑋𝑜) = 𝑝2
1(𝑋°)λ2(𝑋𝑜), 𝑋𝑜 ∈ 𝑺 ,                                         (4.42) 

where 𝑝2
1(𝑋°) = λ1(𝑋𝑜)/λ2(𝑋𝑜), and at a priority of the second criterion over the first: 

λ𝑜 = λ2(𝑋𝑜) = 𝑝1
2(𝑋°)λ1(𝑋𝑜), 𝑋𝑜 ∈ 𝑺, 

where 𝑝1
2(𝑋°) = λ2(𝑋𝑜)/λ1(𝑋𝑜). 

4.2.4. Mathematical Method of the Solution of a Vector Problem with Criterion Priority. 

Step 1. We solve a vector problem with equivalent criteria. The algorithm of the decision is 

presented in Section 4.1.4.  

As a result of the decision, we obtain: 
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optimum points by each criterion separately 𝑋𝑘
∗, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅ and sizes of criterion functions in 

these points of 𝑓𝑘
∗ = 𝑓𝑘(𝑋𝑘

∗), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅, which represent the boundary of a set of Pareto optimal 

points; 

anti-optimum points by each criterion of 𝑋𝑘
0 =  {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} and the worst unchangeable part 

of each criterion of 𝑓𝑘
0 = 𝑓

𝑘
(𝑋𝑘

0), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; 

𝑿𝒐 = {𝑋𝑜, 𝑜}, an optimum point, as a result of the solution of VPMP at equivalent criteria, 

i.e., the result of the solution of a maximine problem and the -problem constructed on its basis; 

°, the maximum relative assessment which is the maximum lower level for all relative esti-

mates of k(X°), or the guaranteed result in relative units, ° guarantees that all relative estimates of 

k(X°) are equal to or greater than °:  

λ𝑜 ≤ λ𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑋° Î 𝑆 .                                           (4.43) 

The person making the decision carries out the analysis of the results of the solution of the 

vector problem with equivalent criteria.  

If the received results satisfy the decision maker, then the process concludes, otherwise subse-

quent calculations are performed. 

In addition, we calculate: 

in each point 𝑋𝑘
∗, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅   we determine sizes of all criteria of: 𝑞 = 1, 𝐾̅̅ ̅̅ ̅ 

{𝑓𝑞(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅}, k = 1, 𝐾̅̅ ̅̅ ̅, and relative estimates 

(𝑋∗)  =  {λ𝑞(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅},  λ𝑘(𝑋)  =

𝑓𝑘(𝑋)−𝑓𝑘
0

𝑓𝑘
∗−𝑓𝑘

0 ,𝑘 Î 𝑲: 

𝐹(𝑋∗) = |
𝑓1(𝑋1

∗) … 𝑓𝐾(𝑋1
∗)

…
𝑓1(𝑋𝐾

∗ ) … 𝑓𝐾(𝑋𝐾
∗ )

|  ,  (𝑋∗) = |
1(𝑋1

∗) … 𝐾(𝑋1
∗)

…
1(𝑋𝐾

∗ ) … 𝐾(𝑋𝐾
∗ )

|.                              (4.44) 

 

Matrices of criteria of F(X*) and relative estimates of (X*) show the sizes of each criterion of  

𝑘 = 1, 𝐾̅̅ ̅̅ ̅ upon transition from one optimum point 𝑋𝑘
∗, 𝑘Î𝑲 to another 𝑋𝑞

∗, 𝑞Î𝑲, i.e., on the border of 

a great number of Pareto. 

at an optimum point at equivalent criteria Xo we calculate sizes of criteria and relative estimates: 

𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; λ𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                                             (4.45) 

which satisfy the inequality of Equation (4.43). In other points XÎSo, in relative units the criteria of 

 =  𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑋) are always less than °, given the -problem of Equations (4.37)-(4.38). This 

information is also a basis for further study of the structure of a great number of Pareto. 

Step 2. Choice of priority criterion of 𝑞 ∈ 𝑲. 

From theory (see Theorem 1) it is known that at an optimum point Xo there are always two most 

inconsistent criteria, 𝑞 ∈ 𝑲 and 𝑣 ∈ 𝑲, for which in relative units an exact equality holds: 

λ𝑜 = λ𝑞(𝑋𝑜) = λ𝑣(𝑋𝑜), 𝑞, 𝑣 ∈ 𝑲, 𝑋Î 𝑺. Others are subject to inequalities:  

λ𝑜 ≤ λ𝑘(𝑋𝑜), ∀𝑘 ∈ 𝑲, 𝑞 ≠ 𝑣 ≠ 𝑘. 

As a rule, the criterion which the decision-maker would like to improve is part of this couple, 

and such a criterion is called a priority criterion, which we designate 𝑞 ∈ 𝑲. 

Step 3. Numerical limits of the change of the size of a priority of criterion 𝑞 ∈ 𝑲 are defined. 

For priority criterion 𝑞 ∈ 𝑲 from the matrix of Equation (4.44) we define the numerical limits 

of the change of the size of criterion: 

 in physical units of 𝑓𝑘(𝑋𝑜) 𝑓𝑞(𝑋)  𝑓𝑞(𝑋𝑞
∗), 𝑘Î𝑲,                                                (4.46) 

where 𝑓𝑞(𝑋𝑞
∗ ) derives from the matrix of Equation F(X*) (4.44), all criteria showing sizes measured 

in physical units, 𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ from Equation (4.45), and, 

in relative units of 𝑘(𝑋𝑜) 𝑞(𝑋)  𝑞(𝑋𝑞
∗), 𝑘Î𝑲,                                                (4.47) 

where 𝜆𝑞(𝑋𝑞
∗)derives from the matrix (𝑋∗), all criteria showing sizes measured in relative units (we 

note that 𝜆𝑞(𝑋𝑞
∗) = 1), 𝜆𝑞(𝑋𝑜) from Equation (4.44). 

As a rule, Equations (4.46) and (4.47) are given for the display of the analysis. 

Step 4. Choice of the size of priority criterion (decision-making). 

*

k
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The person making the decision carries out the analysis of the results of calculations of Equation 

5.14) and from the inequality of Equation (4.46) chooses the numerical size fq of the criterion of 𝑞 ∈
𝑲: 

𝑓𝑞(𝑋𝑜) 𝑓𝑞  𝑓𝑞(𝑋𝑞
∗), 𝑞 ∈ 𝑲.                                                    (4.48) 

For the chosen size of the criterion of fq it is necessary to define a vector of unknown 𝑋𝑜𝑜. For 

this purpose, we carry out the subsequent calculations. 

Step 5. Calculation of a relative assessment. 

For the chosen size of the priority criterion of fq the relative assessment is calculated as: 

λ𝑞 =
𝑓𝑞−𝑓𝑞

0

𝑓𝑞
∗−𝑓𝑞

0,                                                                    (4.49) 

which upon transition from point Xo to 𝑋𝑞
∗, according to Equation (4.44), lies in the limits:  

λ𝑞(𝑋°)  ≤ λ𝑞 ≤ λ𝑞(𝑋𝑞
∗)  = 1. 

Step 6. Calculation of the coefficient of linear approximation. 

Assuming a linear nature of the change of criterion of fq(X) in Equation (4.49) and according to 

the relative assessment of λ𝑞(𝑋), using standard methods of linear approximation we calculate the 

proportionality coefficient betweenλ𝑞(𝑋°), λ𝑞, which we call : 

 =  
λ𝑞 − λ𝑞(𝑋𝑜)

λ𝑞
∗ −λ𝑞

0 , 𝑞 ∈ 𝑲. 

Step 7. Calculation of coordinates of priority criterion with the size 𝑓𝑞. 

In accordance with Equation (4.48.4), the coordinates of the 𝑋𝑞 priority criterion point lie within 

the following limits: 𝑋𝑜  𝑋𝑞  𝑋𝑞
∗, 𝑞 ∈ 𝑲. Assuming a linear nature of change of the vector 

𝑋𝑞 =  {𝑥1
𝑞

, … , 𝑥𝑁
𝑞

}  we determine coordinates of a point of priority criterion with the size fq with 

the relative assessment of Equation (4.45): 

𝑋𝑞 = {𝑥1
𝑞

= 𝑥1
𝑜 + (𝑥𝑞

∗(1) − 𝑥1
𝑜), … , 

𝑥𝑁
𝑞

= 𝑥𝑁
𝑜 + (𝑥𝑞

∗(𝑁) − 𝑥𝑁
𝑜 )},                                                 (4.50) 

where 𝑋𝑜 = {𝑥1
𝑜 , … , 𝑥𝑁

𝑜 }, 𝑋𝑞
∗ = {𝑥𝑞

∗(1), … , 𝑥𝑞
∗(𝑁)}. 

Step 8. Calculation of the main indicators of a point xq (5.20). 

For the obtained point xq, we calculate: 

all criteria in physical units: 𝐹𝑞 = {𝑓𝑘(𝑥𝑞), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅}; 

all relative estimates of criteria: 

 𝜆𝑞 = {𝜆𝑘
𝑞

, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, λ𝑘(𝑥𝑞) =
𝑓𝑘(𝑥𝑞)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅;                                (4.51) 

the vector of priorities: 𝑃𝑞 =  {𝑝𝑘
𝑞

=  
 λ𝑞(𝑥𝑞)

λ𝑘(𝑥𝑞)
, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅}; 

the maximum relative assessment: 𝜆𝑜𝑞 = min (𝑝𝑘
𝑞

 λ𝑘(𝑥𝑞), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅). 

Any (5.21) point from Pareto's set 𝑿𝒕
𝒐 = {𝜆𝑡

𝑜, 𝑋𝑡
𝑜}Î  𝑺𝒐 can be similarly calculated. 

Analysis of results. The calculated size of criterion 𝑓𝑞(𝑋𝑡
𝑜), 𝑞 ∈ 𝑲 is usually not equal to the 

set fq. The error of the choice of 𝑓𝑞 = |𝑓𝑞(𝑋𝑡
𝑜) − 𝑓𝑞| is defined by the error of linear approximation. 

The results of the study of symmetry in VPMP with a given priority are similar as for VPMP with 

equivalent criteria, but the center of symmetry is shifted towards the priority criterion. 

Conclusion on the theory and axiomatics of vector optimization. 

The presented theory, axiomatics, principles of optimality are a further development of the ax-

iomatic approach laid down in the famous work "Elements" by the ancient Greek scientist Euclid, 

who presented axioms for one-dimensional mathematics. This is reflected in the theory of optimiza-

tion with one criterion. Axiomatics (Mashunin Yu.K.), set forth in the work, is aimed at a systematic 

(with many criteria) study of objects, processes of engineering systems. 

5. Software and Methodology for Modeling and Making an Optimal Decision on the Se-

lection of Parameters of Complex Engineering Systems  

5.1. Software for modeling complex engineering systems based on the theory and methods of 

vector optimization 

Mathematical models of the structure of the material (2.4) - (2.8), (2.22)-(2.27) and the engi-

neering systems are built in the form of a vector problem of nonlinear programming (VPNP). We will 
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present software for modeling engineering systems based on the theory and methods of solving vector 

optimization problems, [46]. 

5.1.1. Software development of the VPNP solution 

The software for solving the vector problem of nonlinear programming (3.1) -(3.4), on the basis 

of which models of engineering systems are formed, is implemented on the basis of the algorithm for 

solving the VPNP, described in the previous sections. In solving the VPNP for each criterion, the 

FMINCON program (...) in the MATLAB system was used.  

When using the FMINCON(...) program, it is necessary to develop two subroutines – functions. 

The first function includes two blocks: the first block is designed to evaluate at point X the criterion 

𝑓𝑘(𝑋)𝑘ÎК; the second block to calculate the first derivative at this point  
𝑑𝑓𝑘(𝑋)

d𝑋
𝑘ÎК.  The second 

function includes the same two blocks for constraints only. The FMINCON program (...) is used in 

the first step of the algorithm (maximizing the criteria) and in the second step of the algorithm (min-

imization).  Similarly, according to the algorithm, step 4 and 5 are solved -problem.  

In general, with nonlinear constraints, the software for solving the VPNP includes  

K*2 (1 step) + K*2 (2 step) + 2 (-problem) functions. Since the criteria and limitations of the 

VPNP are individual, individual software is written for each VPNP. To solve the VPNP (3.1) - (3.4) 

below is a program that essentially represents a program - a template for writing and solving other 

vector problems of nonlinear programming (3.1) - (3.4) - mathematical models of engineering sys-

tems. 

5.1.2. Numerical implementation of a vector problem of nonlinear programming 

Example 4.1. 

It is given. The consideration of the vector nonlinear (convex) programming problem with four 

homogeneous criteria. In terms of criteria, we use a circle, and with the linear restrictions the problem 

is therefore solved orally and imposed on variables.  

𝑜𝑝𝑡 𝐹(𝑋) = {𝑚𝑖𝑛 𝐹2(𝑋) = {𝑚𝑖𝑛 𝑓1(𝑋)(𝑥1 − 80)2 + (𝑥2 − 80)2,                                (5.1) 

𝑚𝑖𝑛 𝑓2(𝑋)(𝑥1 − 80)2 + (𝑥2 − 20)2,                                 (5.2) 

 𝑚𝑖𝑛 𝑓3(𝑋)(𝑥1 − 20)2 + (𝑥2 − 20)2,                                 (5.3) 

 𝑚𝑖𝑛 𝑓4(𝑋)(𝑥1 − 20)2 + (𝑥2 − 80)2},                                (5.4) 

at restrictions 0  𝑥1 100,  0  𝑥2  100.                                                  (5.5) 

Need to be determined. Develop software in MATLAB solutions vector problem nonlinear 

programming. Using software solve the problem (5.1)-(5.5). 

5.1.3. Software for solving the vector problem of nonlinear programming (VPNP) 

To solve the vector problem of nonlinear programming (5.1) - (5.5) - a model of an engineering 

system, a program has been developed in the MATLAB system, which implements an algorithm for 

solving VPNP with equivalent criteria. The following is the result of the VPNP (5.1) to (5.5) decision 

obtained by the program. 

Recording the program in MATLAB format 
% Программа "Решение векторной задачи нелинейного программирования": 

 function [x,f] = VPNP_2_4Krit_100(x) 
% Автор: Машунин Юрий Константинович (Mashunun Yu. K.) 
% Алгоритм и программа предназначена для использования в образовании и научных  
% исследованиях, для коммерческого использования обращаться: Mashunin@mail.ru 
% Algorithm VPNP: 4Kritery + L-zadaha 
%[X,Fval,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN]= 
%                                 FMINCON(FUN,Xo,A,b,Aeq,beq, lb,ub,nonlcon,op-

tions,P1,P2,...) 
disp('*** Блок Исходных данных. ВЗНП:***') 
disp('opt F(X)={max F1(X)={min f1=(x1-80).^2+(x2-80).^2; ') 
disp('                     min f2=(x1-80).^2+(x2-20).^2; ') 
disp('                     min f3=(x1-20).^2+(x2-20).^2; ') 
disp('                     min f4=(x1-20).^2+(x2-80).^2; ')  
disp('                              0<=x1<=100, 0<=x2<=100 ')  
lb=[0. 0.]; 
ub=[100. 100.]; Xo=[0. 0.]; 
options=optimset('LargeScale','off'); 
options=optimset(options,'GradObj','on','GradConst','off'); 
A=[1 0; 
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   0 1];  
b=[100 100]; 
Aeq=[]; beq=[]; 
XoK1max=[0. 0.]; 
disp('*** Шаг 1. Решение по каждому критерию (наилучшее) ***')%  
[x1max,f1max]= fmincon('VPNP_2_Krit1max',XoK1max,A,b,Aeq,beq,lb,ub,'',options) 
[f1X1max] = VPNP_2_Krit1min(x1max) 
[f2X1max] = VPNP_2_Krit2min(x1max) 
[f3X1max] = VPNP_2_Krit3min(x1max) 
[f4X1max] = VPNP_2_Krit4min(x1max) 
XoK2max=[0. 0.]; 
[x2max,f2max]= fmincon('VPNP_2_Krit2max',XoK2max,A,b,Aeq,beq,lb,ub,'',options) 
[f1X2max] = VPNP_2_Krit1min(x2max) 
[f2X2max] = VPNP_2_Krit2min(x2max) 
[f3X2max] = VPNP_2_Krit3min(x2max) 
[f4X2max] = VPNP_2_Krit4min(x2max) 
XoK3max=[0. 0.]; 
[x3max,f3max]= fmincon('VPNP_2_Krit3max',XoK3max,A,b,Aeq,beq,lb,ub,'',options) 
[f1X3max] = VPNP_2_Krit1min(x3max) 
[f2X3max] = VPNP_2_Krit2min(x3max) 
[f3X3max] = VPNP_2_Krit3min(x3max) 
[f4X3max] = VPNP_2_Krit4min(x3max) 
XoK4max=[0. 0.]; 
[x4max,f4max]= fmincon('VPNP_2_Krit4max',XoK4max,A,b,Aeq,beq,lb,ub,'',options) 
[f1X4max] = VPNP_2_Krit1min(x4max) 
[f2X4max] = VPNP_2_Krit2min(x4max) 
[f3X4max] = VPNP_2_Krit3min(x4max) 
[f4X4max] = VPNP_2_Krit4min(x4max) 
disp('*** Шаг 2. Решение по каждому критерию (наихудшее) ***')% 
XoK1min=[0. 0.]; 
[x1min,f1min]= fmincon('VPNP_2_Krit1min',XoK1min,A,b,Aeq,beq,lb,ub,'',options) 
[f1X1min] = VPNP_2_Krit1min(x1min) 
[f2X1min] = VPNP_2_Krit2min(x1min) 
[f3X1min] = VPNP_2_Krit3min(x1min) 
[f4X1min] = VPNP_2_Krit4min(x1min) 
[x2min,f2min] = fmincon('VPNP_2_Krit2min',Xo,A,b,Aeq,beq,lb,ub,'',options) 
[f1X2min] = VPNP_2_Krit1min(x2min) 
[f2X2min] = VPNP_2_Krit2min(x2min) 
[f3X2min] = VPNP_2_Krit3min(x2min) 
[f4X2min] = VPNP_2_Krit4min(x2min) 
[x3min,f3min] = fmincon('VPNP_2_Krit3min',Xo,A,b,Aeq,beq,lb,ub,'',options) 
[f1X3min] = VPNP_2_Krit1min(x3min) 
[f2X3min] = VPNP_2_Krit2min(x3min) 
[f3X3min] = VPNP_2_Krit3min(x3min) 
[f4X3min] = VPNP_2_Krit4min(x3min) 
[x4min,f4min] = fmincon('VPNP_2_Krit4min',Xo,A,b,Aeq,beq,lb,ub,'',options) 
[f1X4min] = VPNP_2_Krit1min(x4min) 
[f2X4min] = VPNP_2_Krit2min(x4min) 
[f3X4min] = VPNP_2_Krit3min(x4min) 
[f4X4min] = VPNP_2_Krit4min(x4min) 
disp('*** Шаг 3. Системный анализ результатов ***')%  
disp('Оценка критериев в точках оптимума: X1min,X2min,X3min,X4min')%  
F=[f1X1min f2X1min f3X1min f4X1min;  
   f1X2min f2X2min f3X2min f4X2min; 
   f1X3min f2X3min f3X3min f4X3min; 
   f1X4min f2X4min f3X4min f4X4min] 
d1=f1X1min-f1X1max 
d2=f2X2min-f2X2max 
d3=f3X3min-f3X3max 
d4=f4X4min-f4X4max 
disp('Оценка критериев в относительных единицах: X1min,X2min,X3min,X4min')%  
L=[(f1X1min-f1X1max)/d1 (f2X1min-f2X2max)/d2 (f3X1min-f3X3max)/d3 (f4X1min-

f4X4max)/d4;  
   (f1X2min-f1X1max)/d1 (f2X2min-f2X2max)/d2 (f3X2min-f3X3max)/d3 (f4X2min-

f4X4max)/d4; 
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   (f1X3min-f1X1max)/d1 (f2X3min-f2X2max)/d2 (f3X3min-f3X3max)/d3 (f4X3min-

f4X4max)/d4; 
   (f1X4min-f1X1max)/d1 (f2X4min-f2X2max)/d2 (f3X4min-f3X3max)/d3 (f4X4min-

f4X4max)/d4]  
disp('*** Шаг 4. Построение L-задачи ***')%  
Ao=[1 0 0; 
    0 1 0];  
bo=[100 100]; Aeq=[]; beq=[]; 
Xoo=[0 0 0]  
lbo=[0. 0. 0.]  
ubo=[100. 100. 1]  
disp('*** Шаг 5. Решение L-задачи ***')%  
[Xo,Lo]=fmincon('VPNP_2_L',Xoo,Ao,bo,Aeq,beq,lbo,ubo,'VPNP_2_LConst') %,options) 
disp('Оценка критериев в точке оптимума Xo')%  
[f1Xo] = VPNP_2_Krit1min(Xo(1:2)) 
[f2Xo] = VPNP_2_Krit2min(Xo(1:2)) 
[f3Xo] = VPNP_2_Krit3min(Xo(1:2)) 
[f4Xo] = VPNP_2_Krit4min(Xo(1:2)) 
disp('Оценка критериев в точке оптимума Xo в относительных единицах')%  
L1Xo=(f1Xo+f1max)/d1 
L2Xo=(f2Xo+f2max)/d2 
L3Xo=(f3Xo+f3max)/d3 
L4Xo=(f4Xo+f4max)/d4 
% ****Конец********* 
%    [Программа "Расчет 1 критер. - max"] файл: VPNP_2_Krit1max 
 function [f,G] = VPNP_2_Krit1max(x) 
f=-(x(1)-80).^2-(x(2)-80).^2;    %Расчет функции - критерий 1 
G=[-2*(x(1)-80),   -2*(x(2)-80)];%Расчет 1 производной критерия 1  
%  [Программа "Расчет 1 критер. - min"] Файл: VPNP_2_Krit1min 
 function [f,G] = VPNP_2_Krit1min(x); 
f=(x(1)-80).^2+(x(2)-80).^2; 
G=[2*(x(1)-80);   2*(x(2)-80)]; 
% [Программа "Расчет 2 критер. - max"] Файл:  VPNP_2_Krit2max 
 function [f,G] = VPNP_2_Krit2max(x); 
f=-(x(1)-80).^2-(x(2)-20).^2;  
G=[-2*(x(1)-80);   -2*(x(2)-20)]; 
%    [Программа "Расчет критер. 2 - min"] Файл: VPNP_2_Krit2min 
 function [f,G] =VPNP_2_Krit2min(x); 
f=(x(1)-80).^2+(x(2)-20).^2; 
G=[2*(x(1)-80);   2*(x(2)-20)]; 
% [Программа "Расчет 3 критер. - max"] Файл: VPNP_2_Krit3max 
 function [f,G] = VPNP_2_Krit3max(x); 
f=-(x(1)-20).^2-(x(2)-20).^2; 
G=[-2*(x(1)-20);   -2*(x(2)-20)]; 
% [Программа "Расчет 3 критер. - min"] Файл: VPNP_2_Krit3min 
 function [f,G] = VPNP_2_Krit3min(x); 
f=(x(1)-20).^2+(x(2)-20).^2; 
G=[2*(x(1)-20);    2*(x(2)-20)]; 
% [Программа "Расчет 4 критер. - max"] Файл:VPNP_2_Krit4max  
function [f,G] = VPNP_2_Krit4max(x); 
f=-(x(1)-20).^2-(x(2)-80).^2; 
G=[-2*(x(1)-20);   -2*(x(2)-80)]; 
% [Программа "Расчет 4 критер. - max"] Файл:VPNP_2_Krit4max  
function [f,G] = VPNP_2_Krit4max(x); 
f=-(x(1)-20).^2-(x(2)-80).^2; 
G=[-2*(x(1)-20);   -2*(x(2)-80)]; 
%[Программа "Расчет критер. L-задачи"] файл: VPNP_2_L 
function [f,G] = VPNP_2_L(x) 
f=-x(3); 
G=[0;    0;  -1]; 
%        [Программа "Расчет ограничений L-задачи"] файл: VPNP_1_LConst 
function [c,ceq,DC,DCeq]= VPNP_2_LConst(x) 
d1=12800;d2=12800;d3=12800;d4=12800; 
f1X1max=12800;f2X2max=12800;f3X3max=12800;f4X4max=12800; 
c(1)=((x(1)-80).^2+(x(2)-80).^2)/d1+x(3)-f1X1max/d1; 
c(2)=((x(1)-80).^2+(x(2)-20).^2)/d2+x(3)-f2X2max/d2; 
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c(3)=((x(1)-20).^2+(x(2)-20).^2)/d3+x(3)-f3X3max/d3; 
c(4)=((x(1)-20).^2+(x(2)-80).^2)/d4+x(3)-f4X4max/d4; 
G1=[2*(x(1)-80)/d1, 2*(x(1)-80)/d2, 2*(x(1)-20)/d3, 2*(x(1)-20)/d4; 
    2*(x(2)-80)/d1, 2*(x(2)-20)/d2, 2*(x(2)-20)/d3, 2*(x(2)-80)/d4; 
              1.0,             1.0,         1.0,        1.0];  
ceq=[]; DCeq=[]; 

% *****Конец***** 

% *****Конец***** 

5.1.4. Solving the vector problem of nonlinear programming (5.1) - (5.5)  

The above program is used to solve the VPNP (5.1) to (5.5). The solution is presented as a 

sequence of steps.  

Step 1. The vector problem (5.1) – (5.5) on max for each criterion is solved separately. Results 

of the decision of the VPMP (5.1) to (5.5) for each criterion: 

Criterion 1: 𝑋1
∗ = {𝑥1 = 0, 𝑥2 = 0}, 𝑓1

∗ = 𝑓1(𝑋1
∗) = −12800;                                             (5.6) 

Criterion 2.𝑋2
∗ = {𝑥1 = 0, 𝑥2 = 100}, 𝑓2

∗ = 𝑓2(𝑋2
∗) = −12800; 

Criterion 3: 𝑋3
∗ = {𝑥1 = 100, 𝑥2 = 100}, 𝑓3

∗ = 𝑓3(𝑋3
∗) = −12800: 

Criterion 4: 𝑋4
∗ = {𝑥1 = 100, 𝑥2 = 0}, 𝑓4

∗ = 𝑓4(𝑋4
∗) = −12800. 

Step 2. The vector problem (5.1) - (5.5) on min for each criterion is solved separately. Results 

of the decision of the VPMP (5.1) to (5.5) for each criterion: 

Criterion 1: 𝑋1
0 = {𝑥1 = 80, 𝑥2 = 80}, 𝑓1

0 = 𝑓1(𝑋1
0) = 0;                                                   (5.7) 

Criterion 2. 𝑋2
0 = {𝑥1 = 80, 𝑥2 = 20}, 𝑓2

0 = 𝑓2(𝑋2
0) = 0; 

Criterion 3: 𝑋3
0 = {𝑥1 = 20, 𝑥2 = 20}, 𝑓3

0 = 𝑓3(𝑋3
0) = 0: 

Criterion 4: 𝑋4
0 = {𝑥1 = 20, 𝑥2 = 80}, 𝑓4

0 = 𝑓4(𝑋4
0) = 0. 

The results of the decision VPMP (5.1) to (5.5) in each criterion in the field of restrictions (5.6) 

are presented in Fig. 5.1 at salient points. 

 
Figure 5.1. Limitations of VPNP (5.1) - (5.5), optimum points 𝑋𝑘

∗ =
{𝑋1𝑚𝑖𝑛, 𝑋2𝑚𝑖𝑛, 𝑋3𝑚𝑖𝑛, 𝑋4𝑚𝑖𝑛} and relative estimates  𝑘(𝑋), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅, 𝐾 = 4 

 

The Pareto set lies between optimum points 𝑋1
∗𝑋2

∗𝑋3
∗𝑋4

∗, i.e., the area of admissible points of S 

formed by restrictions (5.5) coincides with a point set, which is Pareto-optimal So,  So=S. 

Step 3. A system analysis of the set of Pareto points is performed.  At the optimum points 

𝑋∗ = {𝑋𝑘
∗, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, the values of the target functions F(X*) and the relative values (X*) are deter-

mined:  

𝐹(𝑋∗) = {{𝑓𝑞(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 

(𝑋∗) = {{𝑞(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 

In the MATLAB system, at the optimum points: 𝑋𝑘
∗ = {𝑋1𝑚𝑖𝑛, 𝑋2𝑚𝑖𝑛, 𝑋3𝑚𝑖𝑛, 𝑋4𝑚𝑖𝑛}, the 

calculation of these functions will be as follows (System Analysis Result): 

𝐹(𝑋∗) = ||

𝑓1(𝑋1
∗) 𝑓2(𝑋1

∗) 𝑓3(𝑋1
∗) 𝑓4(𝑋1

∗)

𝑓1(𝑋2
∗) 𝑓2(𝑋2

∗) 𝑓3(𝑋2
∗) 𝑓4(𝑋2

∗)

𝑓1(𝑋3
∗) 𝑓2(𝑋3

∗) 𝑓3(𝑋3
∗) 𝑓4(𝑋3

∗)

𝑓1(𝑋4
∗) 𝑓2(𝑋4

∗) 𝑓3(𝑋4
∗) 𝑓4(𝑋4

∗)

|| = |

0 3600 7200 3600
3600 0 3600 7200
7200 3600 0 3600
3600 7200 3600 0

|, 
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(𝑋∗) = ||

1(𝑋1
∗) 2(𝑋1

∗) 3(𝑋1
∗) 4(𝑋1

∗)

1(𝑋2
∗) 2(𝑋2

∗) 3(𝑋2
∗) 4(𝑋2

∗)

1(𝑋3
∗) 2(𝑋3

∗) 3(𝑋3
∗) 4(𝑋4

∗)

1(𝑋4
∗) 2(𝑋4

∗) 3(𝑋4
∗) 4(𝑋4

∗)

|| = |

1.0 0.7188 0.4375 0.7188
0.7188 1.0 0.7188 0.4375
0.4375 0.7188 1.0 0.7188 
0.7188 0.4375 0.7188 1.0

|. 

At points of an optimum of 𝑋𝑘
∗, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅all relative estimates (the normalized criteria) are 

equal to the unit:  

𝑘(𝑋𝑘
∗) =

𝑓𝑘(𝑋𝑘
∗)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 = 1, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅, 𝐾 = 4. 

At points of an optimum of 𝑋𝑘
0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (anti optimum), all relative estimates are equal to 

zero:  

𝑘(𝑋𝑘
0) =

𝑓𝑘(𝑋𝑘
0)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 = 0, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅, 𝐾 = 4.. 

From here, 𝑘 Î 𝑲,𝑋Î𝑺, 0𝑘(𝑋)1. 

Step 4. Builds -problem.  

Step 5. Solution -problem. Results of the solution -problems: 

Xo=𝑋𝑜 = {𝑥1 = 50.0, 𝑥2 =  50.0, 𝑥3  = 0.8594}  – the optimum point where 𝑥3=λ𝑜;  

𝑥1, 𝑥2 corresponds to the 𝑥1, 𝑥2 problem (5.1) to (5.5);  

Lo = λ𝑜= 0.8594 represents the optimal value of the objective function.  The functions 

λ1(𝑋), λ2(𝑋), λ3(𝑋), λ4(𝑋), as well as the optimum points 𝑋𝑜 and 𝑜
, which are obtained at their 

intersection, in the three-dimensional coordinate system 𝑥1, 𝑥2, λ are shown in Figure 5.2. 

 
Figure 5.2. The results of the solution to VPMP: λ1(𝑋), λ2(𝑋), λ3(𝑋), λ4(𝑋);  

The optimum points 𝑋𝑜; the relative estimates 𝑜
 

 

In Fig. 5.1, 5.2 shows that the region (set of points) bounded by points: 

 𝑺𝒒 = {𝑋1
∗ = 𝑋1𝑜𝑝𝑡𝑋12𝑋𝑜𝑋41} is characterized by the fact that 1(𝑋)𝑘(𝑋), 𝑘 =  2,4̅̅ ̅̅ , 𝑋Î𝑺𝟏, 

(Figure 4.1 shows how 1>2, 3, 4, i.e. the area of 𝑺𝒒=𝟏 is preceded by the first criterion. In this 

area, the priority of the first criterion over the others is always greater than one: 

𝑝𝑘
1(𝑋) = λ1(𝑋)/λ𝑘(𝑋)1,𝑋Î𝑺𝟏. 

Similarly, the areas (sets of points) given priority by the corresponding criterion are shown, 

together they give a set of points optimal according to Pareto, 𝑺𝒐, and it (for this example) is equal to 

the set of allowable points: 𝑺𝒐 =  𝑺𝟏
𝒐  𝑺𝟐

𝒐  𝑺𝟑
𝒐  𝑺𝟒

𝒐 𝑋𝑜 = 𝑺. 

If we solve the problem (5.1) - (5.5) with two criteria, for example, third and fourth, the set of 

Pareto-optimal points lies on the segment 𝑋3
∗𝑋4

∗, and the 𝑋𝑜𝑜  point determines the result of the solu-

tion. 
𝑜𝑜

 is the maximum level, and 
𝑜𝑜 = 3(𝑋𝑜𝑜) = 4(𝑋𝑜𝑜) = 0.7917 according to theorem 1. 
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The Pareto set lies between the points of the optimum𝑋1
∗𝑋2

∗𝑋3
∗𝑋4

∗, i.e. the region of allowable points 

S formed by constraints (5.5) coincides with the set of Pareto optimal points 𝑺𝒐, 𝑺𝒐 = 𝑺. 

5.2. Methodology for Modeling and Making an Optimal Decision on the Choice of Parame-

ters of Complex Engineering Systems in Conditions of Certainty, Uncertainty 

As an object of research, we consider "Engineering systems", which include "technical sys-

tems", "technological processes", "materials", [17, 42, 44]. The study of the engineering system is 

carried out, firstly, under conditions of certainty, when the data on the functional characteristics of 

the engineering system are known; secondly, under conditions of uncertainty, when discrete values 

of individual characteristics are known; There is also data on the restrictions that are imposed on the 

functioning of the system. Mathematical software is based on the methods of vector optimization 

presented in the third section. Methodological support for modeling the engineering system is formed 

as: "Methodology for Modeling and Making an Optimal Decision on the Choice of Parameters of 

Complex Engineering Systems in Conditions of Certainty, Uncertainty". 

5.2.1. Types of Problems Arising in the Process of Modeling and Making an Optimal Decision 

on the Selection of Parameters of Complex Engineering Systems 

 The problems that arise in the process of making an optimal decision on the selection of optimal 

parameters of complex Engineering systems on the basis of vector optimization include three types 

sequentially. 

1 type. Solution of a vector problem of mathematical programming with equivalent criteria. 

The result obtained is the basis for further research of the system. In this case, the method of solving 

a vector problem with equivalent criteria is used. If the result obtained satisfies the decision-maker 

(decision-maker - designer), then it is taken as a basis. If it does not satisfy, then move on to the 

second type (direct problem) or the third type of solving vector problems (Inverse problem). 

2 type. The solution of the direct problem of vector optimization, which consists in the follow-

ing: "What will be the indicators (characteristics) if the parameters of complex engineering systems 

are changed." - The method of solving a vector problem with equivalent criteria is used. 

3 type. The solution of the inverse problem of vector optimization, which consists in the fol-

lowing: "What will be the parameters of complex engineering systems with given characteristics". - 

A method for solving a vector problem at a given criterion priority is used. 

5.2.2. Methodology for Modeling and Making an Optimal Decision on the Choice of Parame-

ters of Complex Engineering Systems in Conditions of Certainty, Uncertainty 

The methodology includes three blocks, divided into a number of stages. 

Block 1. The formation of technical specifications, the transformation of uncertainty condi-

tions (related to experimental data) into conditions of certainty, the construction of a mathematical 

and numerical model of an engineering system (the process of modeling of an engineering system) 

includes 4 stages. 

Stage 1. Formation of technical specifications (initial data) for numerical modeling and selec-

tion of optimal system parameters. The initial data is formed by the designer who designs the engi-

neering system. 

 Stage 2. Construction of mathematical and numerical model of the engineering system in con-

ditions of certainty and uncertainty.  

Stage 3. Transformation of uncertainty conditions into certainty conditions and construction of 

a mathematical and numerical model of an engineering system under conditions of certainty. 

Stage 4. Construction of an aggregated mathematical and numerical model of an engineering 

system under conditions of certainty 

Block 2. Methodology of the process of optimal decision making (selection of optimal param-

eters) in an engineering system based on vector optimization (the process of simulation of an engi-

neering system) 

Stage 5. Solution of a vector problem of mathematical programming (VРMP) - a model of an 

engineering system with equivalent criteria (solution of a direct problem).  

Stage 6. Geometric interpretation of the results of the vector problem of mathematical program-

ming solution with N parameters and K criteria into a two-dimensional coordinate system in relative 

units. 
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Stage 7. Solution of a vector problem of mathematical programming - a model of an engineering 

system with a given priority of the criterion (solution of the inverse problem). 

Block 3. Research, design, geometric interpretation and selection of optimal parameters of a 

complex engineering system in multidimensional mathematics includes 2 stages.  

Stage 8. Geometric interpretation of the solution results in the design of an engineering system 

for the transition from two-dimensional to N-dimensional space in relative units. 

Stage 9. Geometric interpretation of the solution results in the design of an engineering system 

for the transition from two-dimensional to N-dimensional space in physical units. 

6. Selection of optimal parameters of a material of a complex structure under conditions 

of certainty and uncertainty on the basis of multidimensional mathematics. Numerical imple-

mentation. 

The numerical realization of the choice of optimal parameters of a material of a complex struc-

ture is carried out in accordance with the theoretical foundations of multidimensional mathematics, 

including axiomatics, principles of optimality and constructive methods of multidimensional mathe-

matics both with equivalent criteria and with a given priority of criteria, in accordance with Section 

2. 

The methodology of the process of making an optimal decision (selection of optimal parame-

ters) of an engineering system, including the material of a complex structure, is set out in Section 5. 

The problem of decision-making in a complex structure of the material is considered, which is known 

to:  

first, data on the functional relationship of several characteristics with its components (condi-

tions of certainty); secondly, data on a certain set of discrete values of several characteristics (exper-

imental results), in relation to discrete values of parameters – experimental data (uncertainty condi-

tions); thirdly, the restrictions imposed on the functioning of the material of a complex structure. 

 The numerical problem of modeling a material of a complex structure is considered with equiv-

alent criteria and with a given priority of the criterion. 

6.1. Block 1. Formation of technical specifications and construction of a mathematical and 

numerical model of a material of complex structure (the process of modeling of the structure (com-

position) of the material). 

The first stage, as well as the stage of analyzing the results of the solution, choosing the priority 

criterion and its value, is performed by the constructor of a material of a complex structure. The 

remaining stages are performed by a mathematician-programmer. 

6.1.1. Stage 1. The technical assignment: "The choice of optimum parameters of material" 

It is given. Material which structure is defined by four components: 𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4}– a vec-

tor (operated) variable. Y values represent a vector of managed variables. The parameters of the ma-

terial structure are defined, which vary within the following limits: 

21  𝑦1  79;  5  𝑦2  59;  2.1  𝑦3  9.0;  2.2  𝑦4  7.0. 

Input data for a decision-making are four characteristics: 

The functioning of the structure of the material is determined by four characteristics (criteria): 

𝐻(𝑌) = {ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌)}, the value of which depends on the parameters : 𝑌 =
{𝑦1, 𝑦2, 𝑦3, 𝑦4}. 

Conditions of certainty. For the first characteristic: ℎ1(𝑌) the functional dependence on the 

parameters 𝑌 = {𝑦𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅, 𝑉 = 4} is known: 

ℎ1(𝑌) = 323.84 − 2.249𝑦1 −  3.49𝑦2 + 10.7267𝑦3 + 13.124𝑦4 + 0.0968𝑦1𝑦2 −
0.062𝑦1𝑦3 − 0.169𝑦1𝑦4  + 0.0743𝑦2𝑦3 − 0.1042𝑦2𝑦4 −  0.0036𝑦3𝑦4 + 0.0143𝑦1

2 + 0.0118𝑦2
2 −

0.2434𝑦3
2 − 0.5026𝑥4

2.                                                                                                                   (6.1) 

Functional limitations imposed on the third characteristic (property) of the material: 

min ℎ3(𝑋)= 92.4, max ℎ3(𝑋)=161.5.                                     (6.2).   

Conditions of uncertainty. The results of the experimental data are known: for the second, 

third and fourth characteristics ℎ𝑘(𝑌), 𝑘 = 2, 3, 4 for the corresponding values of the parameters: 

𝑌 = {𝑦𝑣 = {𝑦𝑣𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ }, 𝑣 = 1, 𝑉}̅̅ ̅̅ ̅̅ . 

The numerical values of the parameters Y and the characteristics ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌) are pre-

sented in Table 2. 
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Table 2. Experimental values of the parameters 𝑦1, 𝑦2, 𝑦3, 𝑦4 and characteristics of the structure 

of the material ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌). 
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1149.6    

1164.0    

1176.0    

1212.0    

1260.0    

1257.6    

1256.4    

1252.8    

1251.6    

2143.2    

2154.0    

2163.6    

2176.8    

2185.2    

2198.4    

2211.6    

2232.0    

2245.2    

2954.4    

2820.0    

2772.0    

2748.0    

2832.0    

2904.0    

3022.8    

3036.0    

3056.4    

3583.2    

3601.2    

3608.4    

3616.8    

3622.8    

3637.2    

3651.6    

3672.0    

36852    

1195.2    

1212.0    

1236.0    

1251.6    

1272.0    

1296.0    

1318.8    

1344.0    

1388.4    

2176.8    

2196.0    

2220.0    

2245.2    

2286.0    

2294.4    

2313.6    

2340.0    

2382.0    

2988.0    

3012.0    

3036.0    

3056.4    

3108.0    

3156.0    

115.1 

114.5 

114.4 

118.8 

113.8 

113.3 

110.7 

109.2 

108.5 

128.3 

127.4 

126.8 

126.1 

124.3 

124.1 

123.9 

121.4 

121.7 

150.4 

144.9 

140.8 

138.6 

140.8 

143.5 

146.0 

144.9 

143.8 

181.3 

180.8 

179.4 

179.1 

178.0 

177.6 

176.9 

175.3 

174.7 

123.6 

118.7 

115.9 

115.1 

113.2 

111.8 

110.7 

108.2 

106.3 

132.8 

131.1 

129.7 

128.3 

127.0 

125.6 

123.9 

114.5 

119.5 

154.8 

153.2 

151.8 

150.4 

150.7 

151.2 

24.24   

27.60   

28.80   

30.00   

31.20   

32.40   

33.60   

34.80   

34.80   

19.92   

21.60   

25.20   

29.76   

33.48   

37.20   

39.48   

42.00   

49.20   

15.60   

18.00   

21.60   

24.24  

28.80   

32.40   

35.16   

39.60   

44.88  

11.28   

14.40   

16.80   

21.12   

22.80   

27.60   

30.84   

36.00   

40.56   

52.80   

60.00   

64.80   

68.64   

75.60   

82.80   

88.08   

97.20  

107.64   

40.56   

45.60   

52.80   

60.00   

67.20   

73.20   

79.44   

85.20   

99.00   

31.92   

36.00   

43.20   

51.36   

61.20   

72.00   



Раздел журнала: Математические и естественные науки 

Направление исследования: Физико-математические науки 

 

                              Международный научный журнал "Вектор научной мысли" №4(21) Апрель 2025 

www.vektornm.ru | 8 (812) 905 29 09  |  info@vektornm.ru 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

0 

0 

0 

30 

30 

30 

30 

30 

30 

30 

30 

30 

60 

60 

60 

60 

60 

60 

60 

60 

60 

8 

8 

8 

2 

2 

2 

5 

5 

5 

8 

8 

8 

2 

2 

2 

5 

5 

5 

8 

8 

8 

2 

5 

8 

2 

5 

8 

2 

5 

8 

2 

5 

8 

2 

5 

8 

2 

5 

8 

2 

5 
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3244.8    

3228.0    

3193.2    

3616.8    

3639.6    

3660.0    

3685.2    

3708.0    

3732.0    

3753.6    

3672.0    

3822.0    

1218.0    

1248.0    

1272.0    

1318.8    

1344.0    

1392.0    

1422.0    

1464.0    

1524.0 

151.5 

144.9 

140.8 

185.7 

183.5 

182.2 

181.3 

179.4 

178.0 

176.9 

175.3 

172.5 

128.3 

125.6 

124.2 

121.7 

118.7 

115.9 

115.1 

110.4 

108.5 

82.80   

86.40   

90.36   

23.28   

30.00   

36.00   

42.72   

48.00   

54.00   

62.16   

73.20   

81.72   

87.00   

94.80  

103.20  

116.16  

126.00  

136.80  

145.44  

156.00  

174.72 

min 𝑦𝑖(𝑋), 𝑖
= 1, … , 81 

1149.6 92.4 11.3 

max 𝑦𝑖(𝑋), 𝑖
= 1, … ,81 

3822.0 161.5 174.7 

 

In the decision, it is desirable to obtain the value of the score for the first and third characteristics 

(criterion) as high as possible: : ℎ1(𝑌) → 𝑚𝑎𝑥, ℎ3(𝑌) → 𝑚𝑎𝑥; second and fourth as low as possible:  

ℎ2(𝑌) → 𝑚𝑖𝑛, ℎ4(𝑌) → 𝑚𝑖𝑛. 

Parametrical restrictions change in the following limits: 

𝑦1 ∈ [20. 50. 80. ], 𝑦2 ∈ [0. 30. 60. ], 𝑦3 ∈ [2.0 5.0 8.0], 𝑦4 ∈ [2.2 5.5 8.8].                        (6.3) 

21𝑦179, 5𝑦259, 2.1𝑦39, 2.2𝑦47.0. 

The chemical composition of the material of the product is determined (per unit volume, 

weight) by the percentage content of a certain set of material components, which in total are equal to 

one hundred percent:  

𝑦1 + 𝑦2 +  𝑦3, +𝑦4 = 100.                                                                                                    (6.4) 

It is required. 1) To construct mathematical model of structure of the studied material in the 

form of a vector problem of mathematical programming.  

2) To carry out model operation: first, on the basis of the constructed mathematical model, 

secondly, on the basis of methods of solution of a vector problem of non-linear programming at 

equivalent criteria, and, thirdly, the software developed for these purposes in the MATLAB system.  

3) To make an optimal solution: The choice of optimum composition (structure) of material 

according to its functional characteristics taking into account their equivalence.  

4) To choose the optimum composition of structure of material according to its functional char-

acteristics taking into account a priority of the third criterion.  

Stage 1a. Construction of a mathematical model of the structure of the material in conditions 

of certainty and uncertainty in a general form. The construction of a mathematical model for making 

an optimal management decision on the structure of the material is shown in section 2.3. In accord-

ance with (2.21)-(2.27), we will present a mathematical model of the material under conditions of 

certainty in the form of a vector optimization problem: 

𝑂𝑝𝑡 𝐻(𝑌)  =  {max 𝐻1(𝑌) = {max ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                                    (6.5) 

  min 𝐻2(𝑌) = {min ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

,                                      (6.6)  

at restrictions 𝐺(𝑌)  𝐵,  ∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100%,                                 (6.7) 

 ℎ𝑘
𝑚𝑖𝑛  ≤ ℎ𝑘(𝑌) ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑦𝑗
𝑚𝑖𝑛 ≤ 𝑦𝑗 ≤  𝑦𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅,                       (6.8) 

where 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} is a vector of controlled variables (constructive parameters);  
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𝐻(𝑌) = {𝐻1(𝑌) 𝐻2(𝑌) }  - vector criterion, each component of which represents a vector of 

criteria (characteristics) of the material, which functionally depend on Y values of the vector of vari-

ables;  

in (6.8) ℎ𝑘
𝑚𝑖𝑛 ℎ𝑘(𝑌)  ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ is a vector-function of the constraints imposed on the 

functioning of the material; 

in (6.8) 𝑦𝑗
𝑚𝑖𝑛 𝑦𝑗   𝑦𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅ are parametric constraints.  

It is assumed that the functions ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ are differentiable and convex, 𝑔𝑖(𝑌), 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅  

are continuous, and the set of valid points S given by constraints (6.8) is not empty and is a compact:  

 𝑺 = {𝑌Î𝑅𝑛|𝐺(𝑌) ≤ 0, 𝑌𝑚𝑖𝑛 ≤ 𝑌 ≤ 𝑌𝑚𝑎𝑥} ≠ ∅.   

6.1.2. Stage 2. Construction of a numerical model of the structure of a material under con-

ditions of certainty 

The construction of a model of the structure of a material under conditions of certainty is de-

termined by the functional dependence of each characteristic, restrictions on the parameters of the 

material. In our example, the characteristic (6.2) and the constraints (6.1) are known. Using data (6.1), 

(6.2), we will build a numerical model in the form of a vector problem of nonlinear programming 

(6.5)-(6.8) under conditions of certainty: 

𝑚𝑎𝑥 ℎ1(𝑌) = 323.84 − 2.249𝑦1 −  3.49𝑦2 + 10.7267𝑦3 + 13.124𝑦4 + 0.0968𝑦1𝑦2 −
0.062𝑦1𝑦3 − 0.169𝑦1𝑦4  + 0.0743𝑦2𝑦3 − 0.1042𝑦2𝑦4 −  0.0036𝑦3𝑦4 + 0.0143𝑦1

2 + 0.0118𝑦2
2 −

0.2434𝑦3
2 − 0.5026𝑦4

2,                                                   (6.9) 

             at restrictions: 𝑦1 +  𝑦2 + 𝑦3 +  𝑦4 = 100,                                       (6.10) 

 21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.                    (6.11) 

These data are further used in the construction of a general mathematical model of the material 

(under conditions of certainty and uncertainty). 

6.1.3. Stage 3.1. Transformation of experimental data (uncertainty conditions) into data with 

functional dependence (certainty conditions) and construction of a numerical model 

Conditions of uncertainty are characterized by the fact that the initial data characterizing the 

object under study are represented by: a) random, b) fuzzy, or c) incomplete data, i.e., under condi-

tions of uncertainty, only a finite set of measured parameters = 1, 𝑌̅̅ ̅̅ ̅ are known: 

 𝑌𝑣 = {𝑦𝑖𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ , where 𝑣 = 1, 𝑉̅̅ ̅̅ ̅  is the number of components (parameters) from 

which the material can be composed (manufactured), 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅  is the number and set of data; and the 

corresponding set of K characteristics: 

 ℎ𝑘(𝑌𝑣 = {𝑦𝑖𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Therefore, under conditions of uncertainty, there is not enough information about the functional 

dependence of each characteristic and constraints on the parameters. The information data of options 

a) and b) shall be converted into numerical data of option c) and shall be presented in tabular form. 

The paper considers option c) information with incomplete data, which, as a rule, is obtained as a 

result of an experiment. 

Taking into account the measured parameters, 𝑌𝑣 and the corresponding set of K characteristics: 

ℎ𝑘(𝑌𝑣 = {𝑦𝑖𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ Let us present a matrix of results of experimental data 

on the material under study: 

𝐼 = |

 𝑎1 
…

 𝑎𝑀 
| = |

𝑌1 = 𝑦11, 𝑦12, 𝑦13, 𝑦14 ℎ2(𝑌1), ℎ3(𝑌1), ℎ4(𝑌1)
…

𝑌𝑀 = 𝑦𝑀1, 𝑦𝑀2, 𝑦𝑀3, 𝑦𝑀4ℎ2(𝑌𝑀), ℎ3(𝑌𝑀), ℎ4(𝑌𝑀)
|,                  (6.12) 

Let us present a mathematical model of the structure of the material under uncertainty in the 

form of a vector problem of mathematical programming: 

𝑂𝑝𝑡 𝐻(𝑋)  =  {max 𝐼1(𝑌) ≡ {max ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},                  (6.13)  

                  min 𝐼2(𝑌) ≡ {min ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾2
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},                 (6.14)  

at restriction                ℎ𝑘
𝑚𝑖𝑛  ≤  ℎ𝑘(𝑌) ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                                   (6.15) 

∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100%, 𝑦𝑣

𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣
𝑚𝑎𝑥 , 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,                (6.16) 

where 𝑌 = {𝑦𝑣 , 𝑣 = 1, 𝑉̅̅ ̅̅ ̅} is the vector of controlled variables (parameters); 

 𝐻(𝑌) = {𝐼1(𝑌) 𝐼2(𝑌)} is a vector criterion, each component of which represents a vector of 

criteria (output characteristics of the object under study). The value of the characteristic (function) 
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depends on the discrete values of the vector of the variables Y. 𝐼1(𝑌) = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐼2(𝑌) = 1, 𝐾2

𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅  

(uncertainty) – a set of max and min criteria formed under uncertainty; in (6.15) ℎ𝑘
𝑚𝑖𝑛  ≤ ℎ(𝑋) ≤

ℎ𝑘
𝑚𝑎𝑥 , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ – vector-function of the restrictions imposed on the functioning of the object under 

study, 𝑦𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤  𝑦𝑣

𝑚𝑎𝑥, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅ – parametric constraints of the object under study. 

6.1.3. Stage 3.2. Construction of a numerical model of the structure of a material under un-

certainty 

The construction of a numerical model of the structure of the material under uncertainty consists 

in the use of qualitative and quantitative descriptions of the material, the experimental data obtained 

on the principle of "input-output" in Table 1..  

Transformation of information (initial data in Table 1): 

 ℎ2(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), ℎ3(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), ℎ4(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ) into a functional form: ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌) 

is carried out by using mathematical methods (regression analysis). The initial data of Table 2 are 

formed in the MATLAB system in the form of a matrix: 

𝐼 = |𝑌, 𝐻|  = {𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3, 𝑦𝑖4, ℎ𝑖2, ℎ𝑖3, ℎ𝑖4, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ }.                             (6.17) 

Для каждого набора экспериментального данных ℎ𝑘, 𝑘 = 2, 3, 4 строится функция ре-

грессии методом наименьших квадратов 𝐦𝐢𝐧 ∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑀

𝑖=1  в системе MATLAB. Для этого 

формируется полином Ak, определяющий взаимосвязь параметров: 𝑌𝑖 = {𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3, 𝑦𝑖4}  и 

функции 𝑦𝑘𝑖̅̅ ̅̅ = ℎ(𝑌𝑖 , 𝐴𝑘), 𝑘 =  2, 3, 4  . Результатом является система коэффициентов: 𝐴𝑘 =
{𝐴0𝑘 , 𝐴1𝑘, … , 𝐴14𝑘}, которые определяют коэффициенты квадратичного полинома: 

For each set of experimental data ℎ𝑘 , 𝑘 = 2, 3, 4 a regression function is constructed by the 

method of least squares 𝐦𝐢𝐧 ∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑀

𝑖=1  in the MATLAB system. To do this, a polynomial Ak is 

formed, which defines the relationship of the parameters: 𝑌𝑖 = {𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3, 𝑦𝑖4}   and the functions 

of 

 𝑦𝑘𝑖̅̅ ̅̅ = ℎ(𝑌𝑖 , 𝐴𝑘), 𝑘 =  2, 3, 4. The result is a system of coefficients: 𝑌𝑖 = {𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3, 𝑦𝑖4}, 

which determine the coefficients of the quadratic polynomial: 

ℎ𝑘(𝑌, 𝐴) = 𝐴0𝑘 + 𝐴1𝑘𝑦1 + 𝐴2𝑘𝑦2 + 𝐴3𝑘𝑦3 + 𝐴4𝑘𝑦4 + 𝐴5𝑘𝑦1𝑦2 + 𝐴6𝑘𝑦1𝑦3 + 𝐴7𝑘𝑦1𝑦4 +
𝐴8𝑘𝑦2𝑦3 + 𝐴9𝑘𝑦2𝑦4 + 𝐴10𝑘𝑦3𝑦4 + 𝐴11𝑘𝑦1

2 + 𝐴12𝑘𝑦2
2 + 𝐴13𝑘𝑦3

2 + 𝐴14𝑘𝑦4
2, 𝑘 =  2, 3, 4.       (6.18) 

Polynomial approximation software with four variables and fourteen factors is presented in 

[44]. As a result, the experimental data of Table 1 are transformed into a system of coefficients of 

three functions of the form (6.18) in the form of a table (Program Z_Material_MMTT32_os13_4k). 

Polynomial approximation software with four variables and fourteen factors is presented in 

[44]. As a result, the experimental data of Table 1 are transformed into a system of coefficients of 

three functions of the form (4.18) in the form of a table (Program: Z_Material_MMTT32_os13_4k):  

Ao=[323.8408  954.8634  110.02   21.0051      % 𝐴0𝑘                              (6.19) 

-2.2495   28.6719    0.9106   -0.0101      %𝐴1𝑘 

-3.4938   37.0392    0.6206   -0.8403      %𝐴2𝑘 

10.7267  -31.0303   -0.4287   -0.4314     %𝐴3𝑘 

13.1239  -54.0031   -2.5176    1.1718     %𝐴4𝑘 

0.0969   -0.9219   -0.0151    0.0166      %𝐴5𝑘 

-0.0621    0.5644   -0.0094    0.0850      %𝐴6𝑘 

-0.1696    0.8966    0.0222   -0.0001      %𝐴7𝑘 

0.0743   -0.1540   -0.0198    0.0522      %𝐴8𝑘 

-0.1042    0.3919    0.0184    0.0003      %𝐴9𝑘 

0.0036   -0.0135   -0.0006    0.0006      %𝐴10𝑘 

0.0142    0.0477   -0.0004   -0.0021      %𝐴11𝑘 

0.0117    0.0437   -0.0003    0.0035      %𝐴12𝑘 

-0.2433    3.8489    0.0390    0.0061      %𝐴13𝑘 

-0.5026    3.1748    0.1414   -0.0310];    %𝐴14𝑘 

Rj =[0.6115    0.7149    0.6551    0.9017]; 

RRj=[0.3740    0.5111    0.4292    0.8130]; 

На основе    Ao(2)   Ao(3)   Ao(4) строятся функции ℎ2(𝑌), ℎ3(𝑌) и ℎ4(𝑌), которые с 

учетом полученных коэффициентов (4.19) являются численной моделью структуры мате-

риала в условиях неопределенности: 
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On the basis of Ao(2) Ao(3) Ao(4), the functions ℎ2(𝑌), ℎ3(𝑌) a𝑛𝑑 ℎ4(𝑌) are constructed, 

which, taking into account the obtained coefficients (4.19), are a numerical model of the structure 

of the material under uncertainty: 

𝑂𝑝𝑡 𝐻(𝑌)  =  {𝑚𝑎𝑥 ℎ3(𝑌)110.22 + 0.7918𝑦1 + 1.73𝑦2 − 0.3713𝑦3 − 2.20𝑦4 − 0.0132𝑦1𝑦2 −
0.008𝑦1𝑦3 + 0.0193𝑦1𝑦4 − 0.0172𝑦2𝑦3 +  0.0161𝑦2𝑦4 − 0.0006𝑦3𝑦4 − 0.0004𝑦1

2 −
0.0002𝑦2

2 + 0.0335𝑦3
2 + 0.124𝑦4

2,                                  (6.20) 

 𝑚𝑖𝑛 ℎ2(𝑌)954.86 + 28.67𝑦1 + 37.03𝑦2 − 31.03𝑦3 + 54𝑦4 − 0.922𝑦1𝑦2 − 2𝑦1𝑦3 +
0.896𝑦1𝑦4 − 0.154𝑦2𝑦3 + 0.3919𝑦2𝑦4 −  0.0134𝑦3𝑦4 + 0.0478𝑦1

2 + 0.0438𝑦2
2 + 3.8489𝑦3

2 +
3.1748𝑦4

2,                                                     (6.21) 

   𝑚𝑖𝑛 ℎ4(𝑌)21.004 − 0.0097𝑦1 − 0.841𝑦2 − 0.4326𝑦3 + 1.1723𝑦4 + 0166𝑦1𝑦2 +
0.085𝑦1𝑦3 − 0.0001𝑦1𝑦4 + 0.0523𝑦2𝑦3  + 0.0002𝑦2𝑦4 + 0.0006𝑦3𝑦4 − 0.0022𝑦1

2 +
0.0035𝑦2

2 + 0.006𝑦3
2 − 0.0311𝑦4

2},                                (6.22) 

             at restriction: 𝑦1 + 𝑦2 +  𝑦3 + 𝑦4 = 100,                                                     (6.23) 

 21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.                 (6.24) 

Minimum and maximum values of experimental data are 𝑦1, … , 𝑦4 are presented at the bottom 

of Table 2. The minimum and maximum values of the functions ℎ1(𝑌), ℎ3(𝑌), ℎ2(𝑌), ℎ4(𝑌) differ 

slightly from the experimental data. The correlation index and coefficients of determination are pre-

sented in the lower rows of Table 2. The results of regression analysis (6.20)-(6.24) are further used 

when it is necessary to build a general mathematical model of the material. 

6.1.4. Stage 4. Construction of an aggregated mathematical and numerical model of the 

structure of the material under conditions of certainty 

Combining mathematical models of the structure of the material under conditions of certainty 

(6.5)-(6.8) and uncertainty (6.13)-(6.16), we will present a mathematical model of the material under 

conditions of certainty and uncertainty in the aggregate in the form of a vector problem: 

𝑂𝑝𝑡 𝐻(𝑌)  =  {max 𝐻1(𝑌) = {max ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                                        (6.25) 

    max 𝐼1(𝑌) ≡ {max ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},                     (6.26)  

  min 𝐻2(𝑌) = {min ℎ𝑘 (𝑋), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

,                                          (6.27)  

  min 𝐼2(𝑌) ≡ {min ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},                   (6.28)  

at restriction:  ℎ𝑘
𝑚𝑖𝑛  ≤ ℎ𝑘(𝑌) ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑦𝑗
𝑚𝑖𝑛 ≤ 𝑦𝑗 ≤  𝑦𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅,  (6.29) 

where 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} - vector of controlled variables (design parameters);  

𝐻1(Y) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

}, 𝐻2(𝑌)  =  {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

} – 

 many max and min functions, respectively; 

 𝐼1(𝑌) = {{ℎ𝑘(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅} N,1 , 𝐼2(𝑌) = {{ℎ𝑘(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾2

𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅} - 

Multiple max and min matrices, respectively; (definiteness), 𝐾1
𝑢𝑛𝑐 . 𝐾2

𝑢𝑛𝑐 (uncertainty) is a set of cri-

teria max and min formed under conditions of certainty and uncertainty;  

Combining numerical models of the structure of the material under conditions of certainty (6.9)-

(6.11) and uncertainty (6.20)-(6.24), we will present a numerical model of the material under condi-

tions of certainty and uncertainty in the aggregate in the form of a vector problem: 

𝑜𝑝𝑡 𝐹(𝑋) = {max 𝐻1(𝑌) = {max ℎ1(𝑋)323.84 − 2.25𝑦1 − 3.49𝑦2 + 10.72𝑦3  +
13.124𝑦4 + 0.0968𝑦1𝑦2 − 0.062𝑦1𝑦3 − 0.169𝑦1𝑦4  + 0.0743𝑦2𝑦3 − 0.1𝑦2𝑦4 −  0.0036𝑦3𝑦4 +

0.0143𝑦1
2 + 0.0118𝑦2

2 − 0.2434𝑦3
2 − 0.5026𝑦4

2,                           (6.30) 

𝑚𝑎𝑥 ℎ3(𝑌)110.22 + 0.7918𝑦1 + 1.73𝑦2 − 0.3713𝑦3 − 2.20𝑦4 − 0.0132𝑦1𝑦2 −
0.008𝑦1𝑦3 + 0.0193𝑦1𝑦4 − 0.0172𝑦2𝑦3 +  0.0161𝑦2𝑦4 − 0.0006𝑦3𝑦4 − 0.0004𝑦1

2 −
0.0002𝑦2

2 + 0.0335𝑦3
2 + 0.124𝑦4

2},                           (6.31)  

 min 𝐻2(𝑌) = {𝑚𝑖𝑛 ℎ2(𝑌)954.86 + 28.67𝑦1 + 37.03𝑦2 − 31.03𝑦3 + 54𝑦4 −
0.922𝑦1𝑦2 − 2𝑦1𝑦3 + 0.896𝑦1𝑦4 − 0.154𝑦2𝑦3 + 0.3919𝑦2𝑦4 −  0.0134𝑦3𝑦4 + 0.0478𝑦1

2 +
0.0438𝑦2

2 + 3.8489𝑦3
2 + 3.1748𝑦4

2,                             (6.32) 

   𝑚𝑎𝑥 ℎ4(𝑌)21.004 − 0.0097𝑦1 − 0.841𝑦2 − 0.4326𝑦3 + 1.1723𝑦4 + 0166𝑦1𝑦2 +
0.085𝑦1𝑦3 − 0.0001𝑦1𝑦4 + 0.0523𝑦2𝑦3  + 0.0002𝑦2𝑦4 + 0.0006𝑦3𝑦4 − 0.0022𝑦1

2 +
0.0035𝑦2

2 + 0.006𝑦3
2 − 0.0311𝑦4

2}},                              (6.33) 

             at restrictions: 𝑦1 +  𝑦2 + 𝑦3 +  𝑦4 = 100,                                             (6.34) 
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 21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.                     (6.35) 

The vector problem of mathematical programming (6.30)-(6.35) is a numerical model for mak-

ing an optimal decision of the structure of a material under conditions of certainty and uncertainty in 

the aggregate. 

6.2. Block 2. Methodology of the process of making an optimal decision (selection of optimal 

parameters) of the material structure based on the vector problem (VPMP  

6.2.1. Stage 5. Solution of VPMP - model of material structure with equivalent criteria (solution 

of a direct problem). 

For solving vector problems of mathematical programming (6.30)-(6.35), methods based on 

axiomatics and the principle of optimality 1 are presented. The algorithm is presented as a series of 

steps. 

Step 1. Decides problem (6.30) - (6.35) by each criterion separately, at the same time the func-

tion fmincon(…) of the MATLAB system is used, the appeal to the function fmincon(…) is considered 

in [44]. As a result of calculation for each criterion, we receive optimum points: 

 𝑋𝑘
∗  and 𝑓𝑘

∗ = 𝑓𝑘(𝑋𝑘
∗), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑲 = 4  

sizes of criteria in this point, i.e. the best decision on each criterion: 

1: 𝑌1
∗ = {𝑦1 = 46.56, 𝑦2 = 43.23, 𝑦3 = 8.0, 𝑦4 = 2.2}, ℎ1

∗ = ℎ1(𝑌1
∗)  = −387.9;   

2: 𝑌2
∗ = {𝑦1 = 55.60, 𝑦2 = 34.19, 𝑦3 = 8.0, 𝑦4 = 2.2}, ℎ2

∗ = ℎ2(𝑌2
∗)  = 1361.4; 

3: 𝑌3
∗ = {𝑦1 = 31.90, 𝑦2 = 59.00, 𝑦3 = 2.1, 𝑦4 = 7.0}, ℎ3

∗ =  ℎ3(𝑌3
∗)  = −210.3;   

4: 𝑌4
∗ = {𝑦1 = 36.70, 𝑦2 = 59.00, 𝑦3 = 2.1, 𝑦4 = 2.2}, ℎ4

∗ = ℎ4(𝑌4
∗)  = 30.714 

The result the solution of a problem of non-linear programming (6.30)-(6.35) in three-dimen-

sional frames of x1, x3 and 𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋) is presented on Fig 6.5, 6.6, 6.7, 6.8.  

The location of the optimum points 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗ in the region of the constraints (6.30)-(6.35) 

in the coordinates {𝑥1,𝑥3} is shown in Figure 6.1. The set of points of So lying in the domain of 

restrictions between the points𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗ represent a set of Pareto optimal points. 

 
Figure 6.1. The set of admissible points and Pareto optimal 𝑺𝒐𝑺, 𝑋1

∗, 𝑋2
∗, 𝑋3

∗, 𝑋4
∗  

in the coordinate system {𝑥1 , 𝑥3} 

 

 Step 2. Determine the worst value of each criterion (antioptimum): 𝑌𝑘
0 and ℎ𝑘

0 = ℎ𝑘(𝑌𝑘
0), 𝑘 =

1, 𝐾̅̅ ̅̅ ̅, K=4. Why is problem (6.30)-(6.35) solved for each criterion 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅  by the minimum, for each 

criterion 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅  to the maximum. As a result of the solution, we get: 𝑋𝑘

0 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} - the 
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optimum point for the corresponding criterion, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; 𝑓𝑘
0 = 𝑓𝑘(𝑋𝑘

0)  is the value of the k-th crite-

rion at the point, 𝑋𝑘
0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (superscript zero): 

𝑌1
0 = {𝑦1 = 31.9, 𝑦2 = 59.0, 𝑦3 = 2.1, 𝑦4 = 7.00}, ℎ1

0 = ℎ1(𝑌1
0) =  296.6;  

𝑌2
0 = {𝑦1 = 31.9, 𝑦2 = 59.0, 𝑦3 = 2.1, 𝑦4 = 7. }, ℎ2

0 =  ℎ2(𝑌2
0) =  −2458.5; 

𝑌3
0 = {𝑦1 = 78.16, 𝑦2 = 9.02, 𝑦3 = 8, 𝑦4 = 4.81}, ℎ3

0 = ℎ3(𝑌3
0) = 169.26;  

𝑌4
0 = {𝑦1 = 62.71, 𝑦2 = 22.9, 𝑦3 = 8, 𝑦4 = 6.39}, ℎ4

0 =  ℎ4(𝑌4
0) = −73.62. 

The obtained points of the anti-optimum 𝑋1
0, 𝑋2

0, 𝑋3
0, 𝑋4

0  are shown in Figures 6.5, ..., Figure 

6.8 respectively. 

Step 3. Systems analysis of a set of points that are Pareto-optimal is performed, (i.e. the analysis 

by each criterion). In points of an optimum of 𝑌∗ = {𝑌1
∗, 𝑌2

∗, 𝑌3
∗, 𝑌4

∗}sizes of target functions of  

𝐹(𝑋∗) = ‖𝑓𝑞(𝑋𝑘
∗)‖

𝑞=1,𝐾̅̅ ̅̅̅

𝑘=1,𝐾̅̅ ̅̅̅
, 

a vector of 𝐷 = (𝑑1  𝑑2 𝑑3 𝑑4)𝑇 of deviations are determined by each criterion on an admissible 

set of S: 𝑑𝑘 = ℎ𝑘
∗ − ℎ𝑘

0 , 𝑘 = 1,4̅̅ ̅̅ , and matrix of the relative estimates of  

/(𝑌∗) = ‖𝜆𝑞(𝑌𝑘
∗)‖

𝑞=1,𝐾̅̅ ̅̅̅

𝑘=1,𝐾̅̅ ̅̅̅
, where λ𝑘(𝑋) = (ℎ𝑘

∗ − ℎ𝑘
0)/𝑑𝑘  

𝐻(𝑌∗) = ‖

388.0 1444.2 183.9 68.5
382.0 1361.4 177.3 72.1
296.6 2458.5 210.4 30.2
330.1 2210.9 208.0 30.7

‖ , 𝑑𝑘 = ‖

91.4
−1097
41.09
−42.9

‖, 

 (𝑌∗) = ‖

1.0000 0.9245 0.3560 0.1197
0.9367 1.0000 0.1968 0.0363

0.0            0.0 1.0000 1.011
0.3669 0.2257 0.9427 1.0000

‖.                                                                     (6.36) 

The analysis of sizes of criteria in the relative estimates shows that at the points of the optimum 

𝑌∗ = { 𝑌1
∗, 𝑌2

∗, 𝑌3
∗, 𝑌4

∗} (on diagonal) the relative assessment is equal to unit. Other criteria there 

is much less unit. It is required to find such point (parameters) at which the relative estimates are 

closest to unit. The solution of this problem is directed to the solution of -problem - step 4, 5. 

Step 4. Creation of the -problem is carried out in two stages: originally the maximine problem 

of optimization with the normalized criteria is under construction:  

λ𝑜  =  𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑋), 𝐺(𝑋)0, 𝑋  0,                                        (6.36) 

which at the second stage will be transformed to a reference problem of mathematical pro-

gramming (-problem):   


𝑜  =  𝑚𝑎𝑥 ,                                                                                    (6.37) 

at restrictions:  −
ℎ1(𝑌)−ℎ1

0

ℎ1
∗ −ℎ1

0   0,  −
ℎ3(𝑌)−ℎ3

0

ℎ3
∗ −ℎ3

0  0,                                                       (6.38) 

 −
ℎ2(𝑌)−ℎ2

0

ℎ2
∗ −ℎ2

0   0,   −
ℎ4(𝑌)−ℎ4

0

ℎ4
∗ −ℎ4

0  0,                                                      (6.39) 

𝑦1 + 𝑦2 +  𝑦3 + 𝑦4 = 100,                                                                  (6.40) 

01,   21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.                              (6.41) 

where the vector of unknowns has dimension of 𝑁 + 1: 𝒀 = {𝑦1, … , 𝑦𝑁, }; 

functions ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌). correspond to (6.30)-(6.35). Substituting the numerical 

values of the functions ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌), we get -problem: 

 
𝑜  =  𝑚𝑎𝑥 ,                                                                                   (6.42) 

at restrictions:  −
323.84−2.249𝑦1−3.49∗𝑥2 … −0.2434𝑦3

2−0.5026𝑦4
2−ℎ1

0

ℎ1
∗ −ℎ1

0  0,                          (6.43) 

 −  
 110.22+0.7918𝑦1+1.73𝑦2− … +0.0335𝑦3

2+0.124𝑦4
2−ℎ3

0

𝑓3
∗−𝑓3

0  
  0,                       (6.44) 

 −
954.8+28.67𝑦1+37𝑦2− … +3.8489𝑦3

2+3.1748𝑦4
2−ℎ2

0

ℎ2
∗ −ℎ2

0  0,                              (6.45) 

 −
21−0.0097𝑦1−0.841𝑦2− … +0.006𝑦3

2−0.0311𝑦4
2−ℎ4

0

ℎ4
∗ −ℎ4

0  0,                             (6.46) 

𝑦1 + 𝑦2 +  𝑦3 + 𝑦4 = 100,                                                                  (6.47) 

01,   21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.                            (6.48) 

Step 5. Solution of the -problem.  
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For this purpose we use the function fmincon(…): [Xo,Lo]=fmin-

con('Z_TehnSist_4Krit_L',X0,Ao,bo,Aeq,beq,lbo,ubo,'Z_TehnSist_LConst',options). 

As a result of the solution of VPMP (6.30)-(6.35) at equivalent criteria and -problem corre-

sponding to it (6.42)-(6.48) received: 

𝑿𝒐 = {𝒀𝒐 = {y1 = 43.9, y2 = 49.54, y3 = 4.348, y4 = 2.2, o = 0.6087},                (6.49) 

an optimum point – design data of material, 𝑿𝒐. 

The optimum point 𝑿𝒐, which represents the design parameters of the material under equivalent 

criteria (characteristics, shown in Fig. 6.1; ℎ𝑘(𝑌𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ - values of criteria (characteristics of the 

structure of the material): 

{ℎ1(𝑌𝑜) = 364.0, ℎ2(𝑌𝑜) = 1790.7, ℎ3(𝑌𝑜) =  194.3, ℎ4(𝑌𝑜) =  47.5};                         (6.50) 

λ𝑘(𝑌𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅- values of relative estimates 

{λ1(𝑌𝑜) = 0.7372, λ2(𝑌𝑜) = 0.6087, λ3(𝑌𝑜) = 0.6087, λ4(𝑌𝑜) = 0.6087};                  (6.51) 

o=0.6087 is the highest lower level among all relative estimates, measured in relative units::  

𝜆𝑜 = 𝑚𝑖𝑛 (𝜆1(𝑌𝑜), 𝜆2(𝑌𝑜), 𝜆3(𝑌𝑜), 𝜆4(𝑌𝑜)) =  0.6087. 

o – also called the guaranteed result in relative units. The guaranteed result o shows that 

o=0.6087 and the characteristics of the material in relative units  𝜆𝑘(𝑌𝑜) and, accordingly, the char-

acteristics of the structure of the material ℎ𝑘(𝑌𝑜) cannot be improved without degrading other char-

acteristics. 

Note that according to the theorem 1, at the point 𝑌𝑜 Criteria 2, 3 and 4 are contradictory. This 

contradiction is determined by the equality of: 

 λ2(𝑌𝑜) = λ3(𝑌𝑜) = λ4(𝑌𝑜) = λ𝑜 = 0.6087, 

and the rest of the criteria are inequality{λ2(𝑋𝑜) = 0.7372} > λ𝑜. 

Theorem 1 serves as the basis for determining the correctness of the solution of the vector 

problem. In a vector problem of mathematical programming, as a rule, the equation for two criteria 

is satisfied: 

λ𝑜 = λ𝑞(𝑌𝑜) = λ𝑝(𝑌𝑜), 𝑞, 𝑝 Î 𝑲, 𝑋 Î 𝑆, (in our example, such criteria are 2, 3, 4), for the other 

criteria it is defined as inequality. 

6.2.2. Stage 6. Geometric interpretation of the results of the VPMP solution with 4 parameters 

and 4 criteria into a two-dimensional coordinate system (with 2 parameters) in relative units. 

For a geometric interpretation of the results of the VPMP solution with 4 parameters and 4 

criteria, we will introduce changes in the two-dimensional coordinate system (with 2 parameters) in 

relative units. The VPMP (6.30)-(6.35) parameters are 𝑦1 and 𝑦3 are considered as variables, param-

eters 𝑦2 and 𝑦4 are considered permanent. Let's assign a dimension to the constant parameters: 

𝑦2 = 49.5492, 𝑦4 = 2.2 according to the outcome of the VPMP decision (6.30)-(6.35) with 

equivalent criteria presented in (6.49). As a result, the VPMP (6.30)-(6.35) became two-dimensional. 

As a result of the decision of VPMP (6.30)-(6.35) with two variables 𝑦1 and 𝑦3 (additional "o" 

Y1omax was introduced into the designation of the results) obtained. 

1. Coordinates of the point according to the first criterion to the maximum: 

Y1omax = {𝑥1 =46.5676   𝑥2 =49.5492    𝑥3 =8.0000    𝑥4 =2.2000}.               (6.52)  

Values of the four criteria at the point Y1omax: 

FY1omax = {𝑓1(𝑌1𝑜𝑚𝑎𝑥) = 403.6 𝑓2(𝑌1𝑜𝑚𝑎𝑥) = 1430.3 𝑓3(𝑌1𝑜𝑚𝑎𝑥) =190.2  

𝑓4(𝑌1𝑜𝑚𝑎𝑥) =72.7. 

The values are relative to the estimates of the criteria at the point X1omax: 

LY1omax = {λ1(𝑌1𝑜𝑚𝑎𝑥) =1.1708    λ2(𝑌1𝑜𝑚𝑎𝑥) = 0.9372    

λ3(𝑌1𝑜𝑚𝑎𝑥) =0.5098     λ4(𝑌1𝑜𝑚𝑎𝑥) =0.0207.                                             (6.53) 

Coordinates of the point according to the first criterion for the minimum: 

Y1omin ={31.9000   49.5492    2.1000    2.2000}. 

The values of the six criteria at the point Y1omin are: 

FY1omin ={1.0e+03 * 0.3037    2.2073    0.1957    0.0243}. 

The values are relative to the estimates of the criteria at the point Y1omin: 

LY1omin =(0.0774    0.2290    0.6441    1.1503)                                              (6.54) 

2. Coordinates of the point, functions and relative estimates for the second criterion for maxi-

mum and minimum: 
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Y2omax ={55.6075   49.5492    8.0000    2.2000}. 

FY2omax ={1.0e+03 * 0.4320    1.1936    0.1909    0.0842}. 

LY2omax ={1.4813    1.1530    0.5268   -0.2467}. 

Y2omin ={31.9000   49.5492    2.1000    2.2000). 

FY2omin ={1.0e+03 * 0.3037    2.2073    0.1957    0.0243}. 

LY2omin ={0.0774    0.2290    0.6441    1.1503}.                                                             (6.55) 

3. Coordinates of the point, functions and relative estimates for the third criterion for maxi-

mum and minimum: 

Y3omax ={31.9000   49.5492    2.1000    2.2000 }. 

FY3omax ={1.0e+03 * 0.3037    2.2073    0.1957    0.0243}. 

LY3omax ={0.0774    0.2290    0.6441    1.1503}. 

Y3omin ={78.1673   49.5492    8.0000    2.2000}. 

FY3omin ={512.9622  636.7052  192.3963  111.3139}. 

LY3omin ={2.3673    1.6606    0.5629   -0.8782}.                                                             (6.56) 

4. Coordinates of the point, functions, and relative evaluations of the fourth criterion for maxi-

mum and minimum: 

Y4omax ={36.7000   49.5492    2.1000    2.2000}.                                                            (6.57) 

FY4omax ={1.0e+03 * 0.3182    2.1306    0.1964    0.0283}. 

LY4omax ={0.2363    0.2989    0.6603    1.0562}. 

Y4omin ={62.7123   49.5492    8.0000    2.2000}.                                                             (6.58) 

FY4omin ={1.0e+03 * 0.4559    1.0129    0.1914    0.0930}. 

LY4omin ={1.7432    1.3176    0.5391   -0.4511}.                                                             (6.59) 

Let us present in general the results of the VPMP solution with two variable parameters 𝑥1 

and 𝑥3 (two-dimensional VPMP): 

Y =[Yopt(1,:)={46.5676   43.2324    8.0000    2.2000}, λ1(Y1𝑜𝑚𝑎𝑥) =0.5; 

   Yopt(2,:)= {55.6075   34.1925    8.0000    2.2000}, λ2(Y2𝑜𝑚𝑎𝑥) =0.6087; 

   Yopt(3,:)= {31.9000   59.0000    2.1000    7.0000}, λ3(Y3𝑜𝑚𝑎𝑥) = 0.6087; 

   Yopt(4,:)= {36.7000   59.0000    2.1000    2.2000},λ4(Y4𝑜𝑚𝑎𝑥) = 0.7372; 

   Yo(1:4)= {43.9022   49.5492    4.3486    2.200}, λ(Yo) = 𝜆𝑜 = 0.5196.                      (6.60) 

In the admissible set of points S formed by constraints (6.47)-(6.48), the optimum points are 

 𝑌1
∗, 𝑌2

∗, 𝑌, 𝑌4
∗  combined into a contour, represent a set of Pareto-optimal points, , 𝑺𝒐 𝑺, ( S are shown 

in Figure 6.1. The coordinates of these points, as well as the characteristics of the material in relative 

units 𝜆1(𝑌), 𝜆2(𝑌), 𝜆3(𝑌), 𝜆4(𝑌)  are shown in Figure 6.2 in three-dimensional space 𝑥1 𝑥2 and , 

where the third axis  is a relative estimate. 

Discussion. Let's compare the results of the solution of VPMP (6.30)-(6.35) with the variable 

coordinates {𝑦1𝑦2 𝑦3 𝑦4}  (four-dimensional VPMP) presented in (6.49), (6.50), (6.51), with the re-

sults of the VPMP solution (6.30)-(6.35) with variable coordinates {𝑦1 𝑦3} (two-dimensional VPMP) 

presented in (6.60). (In Figures 6.2, ..., 6.7, the vector 𝒀 = {𝑦1, … , 𝑦𝑁, } and the functions 

ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌) are replaced by 𝑿 = {𝑥1, … , 𝑥𝑁, };  functions 

𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋)). 

As a result of the comparison, we see that the values of the four functions 

ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌) at the optimum point 𝑌𝑜 in the coordinates {𝑦1 𝑦3} 𝑎𝑛𝑑 λ𝑜 Match. 

Optimal values of criteria ℎ𝑘(𝑌𝑘
∗), 𝑘 ∈ 𝑲 and the corresponding relative estimates do not match 

Consider, for example, the optimal point, 𝑋3
∗. Function, λ3(𝑋) is formed from the function 

ℎ3(𝑋) with variable coordinates {𝑦1 𝑦3} and with constant coordinates {y2=49.54, y4=2.2}, taken 

from the optimal point 𝑌𝑜. (6.49). At the point 𝑌3
∗ the relative estimate is λ3(𝑌3

∗) = 0.6441 – shown 

in Figure 6.2 with a black dot. But we know that the relative estimate of λ3(𝑌3
∗) derived from the 

function ℎ3(𝑌3
∗) in the third step, it is equal to one, let's denote it as 𝜆3

∆(𝑌3
∗) = 1 – shown in Figure 

6.2 with a red dot. 

The difference between 𝜆3
∆(𝑌3

∗) = 1 and  λ3(𝑌3
∗) = 0.6441  𝜆3

∆(𝑌3
∗) = 1 и λ3(𝑌3

∗) = 0.6441  is 

an error ∆=0.3559 in the transition from a four-dimensional (and in the general case N-dimensional) 

to a two-dimensional system. The point 𝑋1
∗  is shown in the same way. and the corresponding relative 



Раздел журнала: Математические и естественные науки 

Направление исследования: Физико-математические науки 

 

                              Международный научный журнал "Вектор научной мысли" №4(21) Апрель 2025 

www.vektornm.ru | 8 (812) 905 29 09  |  info@vektornm.ru 

estimates, λ1(𝑌1
∗) and 𝜆1

∆(𝑌1
∗). Summarizing and combining the problems of the discussion, we can 

formulate a methodology.  

 
Figure 6.2. Geometric interpretation of the solution of the -problem λ1(𝑋), λ2(𝑋), λ3(𝑋), λ4(𝑋) 

and 𝑋1
∗,𝑋2

∗,𝑋3
∗, 𝑋4

∗ coordinate 𝑥1 , 𝑥3 (= 𝑦1 𝑦3) and  

 

Methodology of geometric interpretation of the transition from N-dimensional to two-dimen-

sional dimension of function in a vector problem of mathematical programming. 

Step 1. Construction and Solution of a λ-Problem with N-Dimensional Parameters. 

Step 2. Construction and solution of a λ-problem with 2-dimensional parameters, the rest (N-2) 

parameters are constant taken from the results of solving a λ-problem with N-dimensional parameters 

(from step 1). 

 Step 3. Geometrical Construction of Functions from a λ-Problem with 2-Dimensional Param-

eters, Standard Methods, and Corresponding Labels. 

Thus, for the first time in domestic and foreign practice, the transition and its geometric illus-

tration from the N-dimensional to the two-dimensional dimension of the function in vector problems 

of mathematical programming with the corresponding approximation errors are shown. 

6.2.3. Stage 7. Decision-making in the structure of material model at the set priority of criterion 

(Algorithm 2. The solution of a vector task with a criterion priority). 

The person making decisions, as a rule, is the designer of material.  

In the section, the variable Y has been replaced with the variable X. 

Step 1. The solution of a vector problem with equivalent criteria. Results of the decision are 

presented in section 3.3. The numerical results of solving the vector problem are presented above.  

A set of Pareto-optimal points 𝑺𝒐𝑺 is between the optimal points 𝑋1
∗ 𝑋𝑜 𝑋3

∗ 𝑋𝑜 𝑋4
∗ 𝑋𝑜 𝑋2

∗ 𝑋𝑜𝑋1
∗ 

(in the figures X is used instead of Y). We will analyze the set of Pareto points 𝑺𝒐𝑺.  

For this purpose, we will connect the auxiliary points: 

 𝑋1
∗ 𝑋3

∗ 𝑋4
∗ 𝑋2

∗ 𝑋1
∗  with the point 𝑋𝑜, which conventionally represents the center of the Pareto 

set. As a result, four subsets of points 𝑋Î𝑺𝑞
𝑜𝑺𝒐𝑺, 𝑞 = 1,4̅̅ ̅̅ . A subset of 𝑺𝟏

𝒐𝑺𝒐𝑺 (S is character-

ized by the fact that the relative estimate 𝜆1 ≥ 𝜆2, 𝜆3, 𝜆4, i.e., in the field of the first criterion, 𝑺𝟏
𝒐. 

takes precedence over the others. Similar to 𝑺𝟐
𝒐, 𝑺𝟑

𝒐, 𝑺𝟒
𝒐 are subsets of points where the second, third, 

and fourth criteria take precedence over the others, respectively. 

 𝑺𝒐 = 𝑺𝟏
𝒐𝑺𝟐

𝒐𝑺𝟑
𝒐𝑺𝟒

𝒐.  
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The coordinates of all the obtained points and the relative estimates are represented in the two-

dimensional space The coordinates of all the obtained points and the relative estimates are represented 

in the two-dimensional space {𝑥1 𝑥3} in Figure 6.1. These coordinates are shown in three dimensioned 

spaces {𝑥1 𝑥3 } in Figure 6.2, where the third axis  is a relative estimate. The limitations of the set 

of Pareto-optimal points are reduced to -0.5 in Figure 6.2. This information is also the basis for further 

study of the structure of the Pareto set in Figure 6.1. The decision-maker, as a rule, is the developer 

of the system (material structure). If the results of solving a vector problem with equivalent criteria 

do not satisfy the decision maker, then the optimal solution is selected from some subset of points 

𝑺𝟏
𝒐, 𝑺𝟐

𝒐, 𝑺𝟑
𝒐, 𝑺𝟒

𝒐. These subsets of Pareto points are shown in Figure 6.1 as functions 𝑓1(𝑋), … , 𝑓4(𝑋). 

Step 2. Choice of priority criterion of qÎK. 

For the choice of priority criterion on the display the message about results of the solution of 

-problem in physical and relative units is given: 

Criteria (6.50) in 𝑌𝑜 optimum point: 

{ℎ1(𝑌𝑜) = 364.0, ℎ2(𝑌𝑜) = 1790.7, ℎ3(𝑌𝑜) =  194.3, ℎ4(𝑌𝑜) =  47.5}; 

λ𝑘(𝑌𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅- values of relative estimates (6.51): 

{λ1(𝑌𝑜) = 0.7372, λ2(𝑌𝑜) = 0.6087, λ3(𝑌𝑜) = 0.6087, λ4(𝑌𝑜) = 0.6087}; 

o=0.6087 is the highest lower level among all relative estimates, measured in relative units:  

𝜆𝑜 = 𝑚𝑖𝑛 (𝜆1(𝑌𝑜), 𝜆2(𝑌𝑜), 𝜆3(𝑌𝑜), 𝜆4(𝑌𝑜)) =  0.6087. 

From the theory (the Theorem 2) it is known that in an optimum point of 𝑋𝑜 there are always 

two most contradictory criteria: qÎK and vÎK for which in the relative unit’s precise equality is 

carried out:  


𝑜 = 𝑞(𝑋𝑜) = 𝑝(𝑋𝑜), 𝑞, 𝑝 Î 𝑲, 𝑋 Î 𝑆, 

and for the others it is carried out inequalities: λ𝑜 ≤ λ𝑘(𝑋𝑜), ∀𝑘 ∈ 𝑲, 𝑞 ≠ 𝑝 ≠ 𝑘 

In the model of material (6.30)-(6.35) and the corresponding λ-problem (6.42)-(6.48), such cri-

teria are the second and third: λ𝑜 = λ2(𝑋𝑜) = λ3(𝑋𝑜)= 0.6087, i.e. numerical symmetry is met. This 

symmetry will be shown in Figure 6.3, where the functions λ1(𝑋) and λ3(𝑋) are presented separately 

on the optimal point side 𝑿𝒐 = {𝑋𝑜, 𝑜}. For comparison, let's similarly present the functions of the 

most contradictory criteria λ2(𝑋) and λ3(𝑋) separately on the side of the optimal point 𝑿𝒐 = {𝑋𝑜, 𝑜}. 

Figures 6.3 and 6.4 show all the points and data discussed in Figure 6.2. 

Typically, of this pair λ𝑜 = λ2(𝑋𝑜) = λ3(𝑋𝑜)= 0.6087 contradictory criteria, the criterion that 

the decision-maker would like to improve is chosen. Such a criterion is called a "priority criterion", 

let's denote it 𝑞 = 3 ∈ 𝑲. This criterion is studied in conjunction with the first criterion 𝑞 = 1 ∈ 𝑲. 

We examine these two criteria from the set of 𝑲 = 4 criteria shown in Figure 6.3.  

The following message is displayed on the display:  

q=input ('Enter priority criterion (number) of q =') - Entered: q=3. 

 

 

Figure 6.3. Solving -problems: λ2(𝑋), 

(λ3(𝑋). and λ4(𝑋) in the three-dimensional 

coordinate system 𝑥1 𝑥2 and ,  λ2(𝑋𝑜) =
λ3(𝑋𝑜) = λ4(𝑋𝑜)= 0.6087 

Figure 6.4.  Solving -problems: (λ2(𝑋)  and 

λ3(𝑋))  in the three-dimensional coordinate 

system 𝑥1 𝑥2 ,  λ2(𝑋𝑜) = λ3(𝑋𝑜)= 0.6087. 
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Step 3. Numerical limits of change of size of a priority of criterion of q=3ÎK are defined. For 

priority criterion of 𝑞 = 3 ∈ 𝑲 changes of numerical limits in physical units upon transition from 

𝑋𝑜 optimum point to the point of 𝑋𝑞
∗ received on the first step at equivalent criteria are defined. q=3 

given about criterion are given for the screen:  

𝑓𝑞(𝑋𝑜) =  194.27 𝑓𝑞(𝑋)  210.35 = 𝑓𝑞(𝑋𝑞
∗), 𝑞 ∈ 𝑲.                                      (6.61) 

In the relative units the criterion of q=3 changes in the following limits:  

𝑞(𝑋𝑜) = 0.6087  𝑞(𝑋)  1 = 𝑞(𝑋𝑞
∗), 𝑞 = 3 ∈ 𝑲.                                (6.62) 

These data it is analysed.   

Step 4. Choice of size of priority criterion of qÎK. (Decision-making). 

On the message: "Enter the size of priority criterion fq=" - we enter, the size of the character-

istic defining structure of material: 𝑓𝑞 = 200. 

Step 5. The relative assessment is calculated.  

For the chosen size of priority criterion 𝑓𝑞 = 200 the relative assessment is calculated: 

𝑞 =
𝑓𝑞−𝑓𝑞

0

𝑓𝑞
∗−𝑓𝑞

0 =  
200−194.27

210.35−194.27
 =  0.7479, 

which upon transition from 𝑋𝑜 point to 𝑋3
∗ lies in limits: 

𝑞(𝑋𝑜) = 0.6087 𝑞(𝑋)0.7489𝑞(𝑋𝑞
∗), 𝑞 = 3 ∈ 𝑲. 

Step 6. Let's calculate coefficient of the linear approximation 

Assuming the linear nature of change of criterion of 𝑓𝑞(𝑋) in (6.61) and according to the rela-

tive assessment of 𝑞(𝑋), using reference methods of the linear approximation, we will calculate a 

constant of proportionality between 𝑞(𝑋𝑜), 𝑞 which we will call : 

 =  
λ𝑞−λ𝑞(𝑋𝑜)

λ𝑞(𝑋𝑞
∗)−λ𝑞(𝑋𝑜)

=  
0.7489−0.6087

1−0.6087
= 0.3558, 𝑞 = 3Î𝑲.                             (6.63)  

Step 7. Let's calculate coordinates of a priority of criteria with dimension of 𝑓𝑞. 

 Assuming the linear nature of change of a vector of 𝑋𝑞={𝑥1  𝑥2 𝑥3  𝑥4}, q=3 we will deter-

mine point coordinates with dimension of fq =200, the relative assessment (6.53): 

𝑋𝜆=0.6596
𝑞=3

= {𝑥1 = 𝑋𝑜(1) +  (𝑋𝑞
∗(1) − 𝑋𝑜(1)), 

𝑥2 = 𝑋𝑜(2) +   (𝑋𝑞
∗(2) − 𝑋𝑜(2)), 

𝑥3 = 𝑋𝑜(3) +  (𝑋𝑞
∗(3) − 𝑋𝑜(3)), 

𝑥4 = 𝑋𝑜(4)  +  (𝑋𝑞
∗(4) − 𝑋𝑜(4))},                                        (6.64) 

where 𝑋𝑜 = {𝑥1 = 43.9, 𝑥2 = 49.54, 𝑥3 = 4.348, 𝑥4 = 2.2}, 

𝑋3
∗ = {𝑥1 = 31.9, 𝑥2 = 59.00, 𝑥3 = 2.1, 𝑥4 = 7.0}. 

As result of the decision (6.40) we will receive 𝑋𝑞 point with coordinates: 𝑋𝑞 = {𝑥1 =
39.63, 𝑥2 = 52.91, 𝑥3 = 3.54, 𝑥4 = 3.907} 

In the relative units the criterion of q=3 changes in the following limits:  

𝑞(𝑋𝑜) = 0. 546  𝑞(𝑋)  1 = 𝑞(𝑋𝑞
∗), 𝑞 = 3 ∈ 𝑲. 

 These data it is analysed.  

Step 8. Calculation of the main indexes of a point of 𝑋𝑞. 

For the received Xq point, we will calculate: all criteria in physical units, 

 𝑓𝑘(𝑋𝑞) = {𝑓𝑘(𝑋𝑞), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑓(𝑋𝑞) = {𝑓1(𝑋𝑞) =  344.3, 𝑓2(𝑋𝑞) = 2000, 𝑓3(𝑋𝑞) =
199, 𝑓4(𝑋𝑞) = 41.7} 

all relative estimates of criteria:  


𝑞 = {𝜆𝑘

𝑞
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑘(𝑋𝑞) =

𝑓𝑘(𝑋𝑞)−𝑓𝑘
0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 = K,11, 𝐾̅̅ ̅̅ ̅, 

𝑘(𝑋𝑞) = {1(𝑋𝑞) =  0.5224, 2(𝑋𝑞) = 0.418,3(𝑋𝑞) =  0.7244,4(𝑋𝑞) = 0.7446}. 

min relative estimates: min (𝑋𝑞) = min
𝑘∈𝐾

(𝑘(𝑋𝑞)) =  0.418. 

𝑃𝑞 = [𝑝1
3 = 1.3868, 𝑝2

3 =  1.7333, 𝑝3
3 = 1.0, 𝑝4

3  =  0.973]; 

вектор приоритетов 𝑃𝑞(𝑋) = {𝑝𝑘
𝑞

=
𝜆𝑞(𝑋𝑞)

𝜆𝑘(𝑋𝑞)
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}: 
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 𝜆𝑘(𝑋𝑞) ∗ 𝑃𝑞 = {𝑝1
3 ∗ 1(𝑋𝑞) = 0.7244, 𝑝2

3 ∗ 2(𝑋𝑞) = 0.7244, 𝑝3
3 ∗ 3(𝑋𝑞) = 0.7244 ,

𝑝4
3 ∗ 4(𝑋𝑞) = 0.7244} 

Min relative estimates: 
𝑜𝑜 = min (𝑝1

31(𝑋𝑞), 𝑝2
32(𝑋𝑞), 𝑝3

33(𝑋𝑞), 𝑝4
34(𝑋𝑞))  = 0.7244 

Similarly, other Pareto points 𝑿𝒕
𝒐 = {𝜆𝑡

𝑜, 𝑋𝑡
𝑜}Î  𝑺𝑜 can be obtained. 

Analysis of the results obtained. The calculated value is 𝑓𝑞(𝑋𝑡
𝑜) = 199, 𝑞 = 3Î𝑲, 𝑞Î𝑲 is 

usually not equal to the given 𝑓𝑞 = 200. 𝑓𝑞 = |𝑓𝑞(𝑋𝑡
𝑜) − 𝑓𝑞| = |199 − 200| = 1.0  is determined 

by a linear approximation error: 𝑓𝑞% =  0.5%. If the error 𝑓𝑞 = |𝑓𝑞(𝑋𝑡
𝑜) − 𝑓𝑞| = |199 − 200| =

1.0, measured in physical units or as a percentage 𝑓𝑞% =
𝑓𝑞

𝑓𝑞
∗ 100 =  0.5%, greater than the spec-

ified 𝑓,𝑓𝑞 > 𝑓 then proceed to step 2, if 𝑓𝑞 ≤ 𝑓, then the calculation is completed.  

In the process of modeling, parametric constraints (6.48) and functions can be changed, i.e., a 

certain set of optimal solutions is obtained. From this set of optimal solutions, we choose the final 

option (the decision-making process). In our example, the final option includes the parameters: 𝑋𝑜 =
{𝑋𝑜, 𝑜} = {𝑋𝑜 = {𝑥1 = 43.9, 𝑥2 = 49.54, 𝑥3 = 4.348, 𝑥4 = 2.2}, 𝑜 = 0.6087}; parameters of the 

technical system at the given priority of the criterion:  

q=3: 𝑋𝑞 = {𝑥1 = 39.63, 𝑥2 = 52.91, 𝑥3 = 3.54, 𝑥4 = 3.907}. 

6.3. Block 3. Research, design, geometric interpretation of N-dimensional space into 2-di-

mensional space and selection of optimal parameters of the complex structure of the material in 

multidimensional mathematics 

 Block 3 includes 2 stages: 8 stages of research in relative units: 9 stages of research in physical 

units. 

6.3.1. Stage 8. Geometric interpretation of the results, solution in relative units when designing 

the structure of the material, transition from N-dimensional to two-dimensional space. 

The geometric interpretation of the results of the solution in relative units can be presented, 

first, by the example of the functions 𝜆2(𝑋), 𝜆3(𝑋), secondly, separately on the example of the func-

tions 𝜆2(𝑋) and 𝜆3(𝑋).  

1. Investigation of the functions of 𝝀𝟐(𝑿), 𝝀𝟑(𝑿) to the maximum.  

When studying the parameters of the material structure on the set of S points formed by con-

straints (6.30)-(6.35), the optimal points  𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗, shown in Figure 6.1, are combined into a 

contour and represent the set of Pareto-optimal points, 𝑺𝒐 𝑺. 

 
Figure 6.5. Functions 𝜆2(𝑋), 𝜆3(𝑋) and 𝜆𝑜 in the 𝜆-problem in the two-dimensional coordinate  

system 𝑥1 𝑥3 𝑎𝑛𝑑  the geometric interpretation 𝜆2(𝑋), 𝜆3(𝑋) in a four-dimensional  

coordinate system of 𝑥1 𝑥2 𝑥3 𝑥4. 
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The coordinates of these points, as well as the characteristics of the structure of the material in 

relative units 𝜆1(𝑋), 𝜆2(𝑋), 𝜆3(𝑋), 𝜆4(𝑋) are shown in Figure 6.2 in two-dimensional space 𝑥1 𝑥2 

and , where the third axis  is a relative estimate. 

Looking at Figure 6.2, we can imagine the changes in all the functions of λ1(𝑋), … , λ4(𝑋) in 

four-dimensional space 𝑥1, … , 𝑥4. For clarity, let's choose the two most contradictory functions 

𝜆2(𝑋), 𝜆3(𝑋), shown in Figure 6.3, and represent these functions 𝜆2(𝑋), 𝜆3(𝑋)  in Figure 6.5. 

Let's consider Figure 6.5 optimal point, 𝑋3
∗. Function λ3(𝑋) – in relative units, formed from 

the function 𝑓3(𝑋)  – in physical units with variable coordinates {𝑥1 𝑥3} and with constant coordi-

nates {𝑥2 = 1790.7, 𝑥4 = 47.5}, taken from the optimal point 𝑋𝑜 (6.50). At the point 𝑋3
∗ the rela-

tive estimate is λ3(𝑋3
∗) = 0.6441  – shown in Figure 6.2 with a black dot. 

But we know that the relative estimate of λ3(𝑋3
∗)  obtained from the function 𝑓3(𝑋3

∗) in the 

third step, it is equal to one, let's denote it as 𝜆3
∆(𝑋3

∗) = 1  – shown in Figure 6.5 with a red dot. The 

difference between 𝜆3
∆(𝑋3

∗) = 1 and λ3(𝑋3
∗) = 0.6441  is an error = 0.3559 of the transition from a 

four-dimensional (and in the general case N-dimensional) to a two-dimensional region. Let us con-

nect the relative estimates 𝜆𝑜 and 𝜆3
∆(𝑋3

∗), lying between the points 𝑋𝑜𝑎𝑛𝑑 𝑋3
∗. 

Similarly, 𝑋3
∗ let's imagine the point 𝑋2

∗  with corresponding relative estimates of λ2(𝑋2
∗)= 

1.1530 in {𝑥2 𝑥3}  coordinates and 𝜆2
∆(𝑋1

∗) = 1 obtained in the coordinates {𝑥1 𝑥2 𝑥3 𝑥4}. A linear 

function connecting the points 𝜆𝑜 and  𝜆2
∆(𝑋2

∗) in relative units, it characterizes the function 𝑓2(𝑋)  

in relative units in the four-dimensional dimension of the parameters 𝑥1, … , 𝑥4. 

And in general, segments are 𝜆2
∆(𝑋2

∗) -𝜆𝑜- 𝜆3
∆(𝑋3

∗) represent the geometric interpolation of the 

functions 𝑓2(𝑋) and 𝑓3(𝑋) in relative units in the four-dimensional dimension of the parameters 

𝑥1, … , 𝑥4. 

2. Investigation of the functions of 𝝀𝟐(𝑿), 𝝀𝟑(𝑿) separately into the maximum and minimum 

of the four-dimensional system. 

 Let's conduct a study of the functions 𝑓2(𝑋), represented in relative units: , 𝜆2(𝑋), which is 

shown in Figure 6.6. 

 
Figure 6.6. Functions 𝜆2(𝑋) and 𝜆𝑜 in the -problem in the two-dimensional coordinate system 

𝑥1 𝑥3 and , the geometric interpretation 𝜆2(𝑋) in a four-dimensional coordinate system 

𝑥1 𝑥2 𝑥3 𝑥4 (highlighted in red). 
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To estimate the maximum 𝜆2
∆(𝑋2

∗) = 1 values of the second criterion in relative units in the four-

dimensional coordinate system {𝑥1 𝑥2 𝑥3 𝑥4), (highlighted in red) the data obtained in the third step 

(6.36) of the matrix (𝑋∗) are used. To estimate the minimum 𝜆2
∆(𝑋2

0) = 0 values of the second crite-

rion in relative units in the four-dimensional coordinate system {𝑥1 𝑥2 𝑥3 𝑥4}, (highlighted in red) the 

data obtained in the third step are used the data obtained in the third step (𝑋0). 

The maximum difference between 𝜆2
∆(𝑋2

∗) = 1 (four-dimensional system) and λ2(𝑋1
∗) = 1.1530  

(two-dimensional system) is an error =0.1530 of the transition from a four-dimensional (and in the 

general case N-dimensional) to a two-dimensional region.  

The minimum difference between λ2
∆(X2

0) = 0 (four-dimensional system) and λ2(𝑋2
0) =  0.2290  

(two-dimensional system) is an error  = 0.2290 of the transition from a four-dimensional (and in the 

general case N-dimensional) to a two-dimensional region. 

We will connect the relative estimates with a linear function: 𝜆2
∆(𝑋2

∗) 𝜆𝑜 and 𝜆2
∆(𝑋2

0), which lie 

between the points: 𝑋2
∗ 𝑋𝑜 and 𝑋2

0. In general, the linear segments are 𝜆2
∆(𝑋2

∗) -𝜆𝑜- 𝜆2
∆(𝑋2

0)  represent 

the geometric interpolation of the function 𝑓2(𝑋) in relative units 𝜆2(𝑋) in the four-dimensional di-

mension of the parameters 𝑥1, … , 𝑥4. 

Let's study the function 𝑓3(𝑋), represented in relative units: 𝜆3(𝑋), shown in Figure 6.7. 

 
Figure 6.7. Functions, 𝜆3(𝑋) and 𝜆𝑜 in the -problem in the two-dimensional coordinate system 

𝑥1 𝑥3 and ; and the geometric interpretation 𝜆3(𝑋) in a four-dimensional coordinate system,  

(highlighted in red). 

 

To estimate the maximum 𝜆3
∆(𝑋3

∗) = 1 values of the third criterion in relative units in the four-

dimensional coordinate system {𝑥1 𝑥2 𝑥3 𝑥4} (highlighted in red) the data obtained in the third step 

(6.36) of the matrix (𝑋∗) are used. To estimate the minimum 𝜆3
∆(𝑋0

0) = 0 values of the first criterion 

in relative units in the four-dimensional coordinate system {𝑥1 𝑥2 𝑥3 𝑥4},  (highlighted in red), the 

data obtained in the third step (6.36) of the matrix (𝑋0) are used. 

The maximum difference is between 𝜆3
∆(𝑋3

∗) = 1 (four-dimensional system) and λ3(𝑋3
∗) =

  0.6441  (two-dimensional system) is the error =0.3559 of the transition from a four-dimensional 

(and in the general case N-dimensional) to a two-dimensional region. 

The minimum difference between 𝜆3
∆(𝑋3

0) = 0 (four-dimensional system) and λ3(𝑋3
0) = 0.5629   

(two-dimensional system) is an error =0.4371 of the transition from a four-dimensional (and in the 

general case N-dimensional) to a two-dimensional region. 
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Let us connect the relative estimates by a linear function 𝜆3
∆(𝑋3

∗) 𝜆𝑜 and 𝜆3
∆(𝑋3

0), lying between 

the points 𝑋3
∗ 𝑋𝑜 and 𝑋3

0. And in general, the segments are 𝜆3
∆(𝑋3

∗) -𝜆𝑜- 𝜆3
∆(𝑋3

0) represent the geometric 

interpolation of the functions 𝑓3(𝑋) in relative units 𝜆3(𝑋) in the four-dimensional dimension of the 

parameters𝑥1, … , 𝑥4.  

Thus, for the first time in domestic and foreign practice, the transition and its geometric inter-

pretation from the N-dimensional to the two-dimensional dimension of the function in vector prob-

lems of mathematical programming with the corresponding approximation errors is shown. 

6.3.2. Stage 9. Geometric interpretation of the results of the solution of the VPMP – a model of 

the structure of the material when designing in a three-dimensional coordinate system in physical 

units. 

At the fifth step of the algorithm, we calculated the parameters of the optimum point with equiv-

alent criteria: 𝑿𝒐 = {𝑋𝑜, 𝑜} = {𝑌𝑜 = {𝑥1 = 43.9, 𝑥2 = 49.54, 𝑥3 = 4.348, 𝑥4 = 2.2}, 𝑜 =
0.6087}, in the two-dimensional coordinate system  𝑥1, 𝑥2 Figure 6.1 and in the three-dimensional 

coordinate system 𝑥1, 𝑥2 and . in relative units in Figures 6.2, 6.3, 6.4 when designing. 

Figure 6.5 shows: optimum points 𝑋1
∗, 𝑋3

∗, with corresponding relative estimates λ1(𝑋1
∗) 𝜆1

∆(𝑋1
∗), 

λ3(𝑋3
∗) 𝜆3

∆(𝑋3
∗)  and linear functions 𝜆𝑜𝜆1

∆(𝑋1
∗), 𝜆𝑜𝜆3

∆(𝑋3
∗) in relative units, which characterize the 

functions 𝑓1(𝑋) , 𝑓3(𝑋)  in the four-dimensional dimension of the parameters 𝑥1, … , 𝑥4..  

Let us examine and present these parameters for each characteristic of the structure of the ma-

terial (criterion): 𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋) in physical units. 

Stage 9.1. Geometric interpretation of the results of the VPMP solution – the first characteristic 

of the structure of the material in the design in physical units.  

The first characteristic of the structure material 𝑓1(𝑋) is formed in 6.1.4: 

 max ℎ1(𝑋)323.84 − 2.25𝑦1 − 3.49𝑦2 + 10.72𝑦3  + 13.124𝑦4 + 0.0968𝑦1𝑦2 −
0.062𝑦1𝑦3 − 0.169𝑦1𝑦4  + 0.0743𝑦2𝑦3 − 0.1𝑦2𝑦4 −  0.0036𝑦3𝑦4 + 0.0143𝑦1

2 + 0.0118𝑦2
2 −

0.2434𝑦3
2 − 0.5026𝑦4

2,  (6.30) 

Let us present a geometric interpretation of the function ℎ1(𝑌) in physical units with variable 

coordinates {𝑦1 𝑦3} and with constant coordinates {𝑦2 = {49.54, 𝑦4 = 2.2}, taken from the optimal 

point 𝑌𝑜 (6.49) in Figure 6.8. 

 
Figure 6.8. Function 𝑓1(𝑋) in a two-dimensional coordinate system 𝑥1 𝑥3 and a geometric  

interpretation of the function 𝑓1(𝑋) in the coordinate system 𝑥1 𝑥2 𝑥3 𝑥4. 
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The coordinates of the maximum point are 𝑌1
∗ = {𝑦1 = 46.7636, 𝑦3 = 8.0} (denoted as 

X1omax in Figure 6.8). The value of the objective function is ℎ1
∗=FX1omax = 387.9.  

The coordinates of the minimum point are 𝑋1
0 = {𝑥1 = 31.9, 𝑥3 = 2.1}  (denoted as X1omin 

in Figure 6.8). The value of the objective function is 𝐹1
0=FX1omin = 296.6. 

The coordinates of the point are 𝑋𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348}  (in Figure 6.8 it is indicated as 

X1o0). Value of the objective function 𝑓1(𝑋𝑜) =FX1o0 = 364.0.  

Optimum points: 𝑋1
∗ with four parameters calculated in step 1 and the criterion value is 𝑓1

∗ =
𝑓1(𝑋1

∗)  = −387.9; point 𝑋1
0  with the value of the criterion 𝑓1

0 = 𝑓1(𝑋1
0) =  296.6 – In the figure, 

they are denoted (𝑓1
∆(𝑋1

∗), 𝑓1
∆(𝑋1

0). 

A linear function connecting the points 𝑓1(𝑋𝑜) and 𝑓1
∆(𝑋1

∗) in physical units, it characterizes the 

function 𝑓1(𝑋) in the four-dimensional dimension of the parameters 𝑥1, … , 𝑥4. And in general, the 

segments are 𝑓1
∆(𝑋1

∗) - 𝑓1(𝑋𝑜) - 𝑓1
∆(𝑋1

0 represent the geometric interpolation of the function 𝑓1(𝑋) in 

the four-dimensional dimension of the parameters 𝑥1, … , 𝑥4. 

Stage 9.2. Geometric interpretation of the results of the VPMP solution – the second character-

istic of the structure material in the design in physical units.  

The second characteristic of the structure material 𝑓2(𝑋) is presented in 6.1.4:   

𝑚𝑖𝑛 𝑓2(𝑋)795.72 +23.89𝑥1+30.866𝑥2 -25.8586𝑥3 -45.0026𝑥4 -0.7683𝑥1𝑥2 +0.4703𝑥1𝑥3 

+0.7472𝑥1𝑥4-0.1283𝑥2𝑥3+0.3266𝑥2𝑥4-0.0112𝑥3𝑥4+0.0398𝑥1
2+0.0365𝑥2

2 +3.2𝑥3
2+2.6457𝑥4

2,  (6.32) 

The coordinates of the maximum point are 𝑋2
∗ = {𝑥1 = 55.6, 𝑥3 = 8.0}  (denoted as X2omax 

in Figure 6.9). The value of the objective function is 𝐹2
∗=FX2omax = 1361.4.  

The coordinates of the minimum point are 𝑋2
0 = {𝑥1 = 31.9, 𝑥3 = 2.1}  (denoted as X2omin 

in Figure 6.9). The value of the objective function is 𝐹2
0=FX2omin = 2458.5.  

The coordinates of the point are 𝑋𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348}  (in Figure 6.9 it is indicated as 

X2o0). The value of the objective function is 𝑓2(𝑋𝑜) =FX2o0 = 1790.7.  

Optimum points: 𝑋2
∗ with four parameters calculated in step 1 and the value of the criterion is 

𝑓2
∗ = 𝑓2(𝑋2

∗)  = 1361.4; point 𝑋2
0 with the value of the criterion 𝑓2

0 = 𝑓2(𝑋2
0) =  −2458.5 – (in Fig-

ure 6.9 it is indicated as 𝑓2
∆(𝑋2

∗), 𝑓2
∆(𝑋2

0)). 

 
Figure 6.9. Function 𝑓2(𝑋) in a two-dimensional coordinate system 𝑓2(𝑋) and a geometric  

interpretation of the function 𝑓2(𝑋) in the coordinate system 𝑥1 𝑥2 𝑥3 𝑥4. 
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A linear function connecting the points 𝑓2(𝑋𝑜) and 𝑓2
∆(𝑋2

∗) in physical units, it characterizes the 

function 𝑓2(𝑋)  in the four-dimensional dimension of the parameters 𝑥1, … , 𝑥4. And in general, the 

segments are 𝑓2
∆(𝑋2

∗) - 𝑓2(𝑋𝑜) - 𝑓2
∆(𝑋2

0) represent the geometric interpolation of the function 𝑓2(𝑋) in 

the four-dimensional dimension of the parameters 𝑥1, … , 𝑥4. 

Stage 9.3. Geometric interpretation of the results of the solution of the VPMP – the third char-

acteristic of the structure of the material in the design in physical units.  

The third characteristic of the structure of the material 𝑓3(𝑋) is formed in 6.1.4: 

𝑚𝑎𝑥 ℎ3(𝑌)110.22 + 0.7918𝑦1 + 1.73𝑦2 − 0.3713𝑦3 − 2.20𝑦4 − 0.0132𝑦1𝑦2 −
0.008𝑦1𝑦3 + 0.0193𝑦1𝑦4 − 0.0172𝑦2𝑦3 +  0.0161𝑦2𝑦4 − 0.0006𝑦3𝑦4 − 0.0004𝑦1

2 −
0.0002𝑦2

2 + 0.0335𝑦3
2 + 0.124𝑦4

2},  (6.31) 

Let us present a geometric interpretation of the function 𝑓3(𝑋) in physical units with variable 

coordinates {𝑥1 𝑥3} and with constant coordinates 𝑦2 = {49.54, 𝑦4 = 2.2}, taken from the optimal 

point 𝑌𝑜   (6.49) in Figure 6.10.  

The coordinates of the maximum point are 𝑋3
∗ = {𝑥1 = 31.9, 𝑥3 = 2.1}  (in Figure 6.10 denoted 

as X3omax). The value of the objective function is 𝐹3
∗=FX3omax = 210.3.   

The coordinates of the minimum point are 𝑋3
0 = {𝑥1 = 78.16, 𝑥3 = 8.0}  (denoted as X3omin 

in Figure 6.10). The value of the objective function is 𝑓3
0=FX3omin = 169.26.  

The coordinates of the point are  𝑋𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348} (in Figure 6.10 it is indicated 

as X3o0). The value of the objective function is 𝑓3(𝑋𝑜) =FX3o0 = 194.3.  

Optimum points: 𝑋3
∗ with four parameters calculated in step 1 and the criterion value is 𝑓3

∗ =
𝑓3(𝑋3

∗)  = −210.3; point 𝑋3
0 with the value of the criterion  𝑓3

0 = 𝑓3(𝑋3
0) =  169.26 – 

(in Figure 6.8 denoted as 𝑓3
∆(𝑋3

∗), 𝑓3
∆(𝑋3

0). 

  

 
Figure 6.10. Function 𝑓3(𝑋) in a two-dimensional coordinate system 𝑥1 𝑥3 and a geometric  

interpretation of the function 𝑓3(𝑋) in the coordinate system 𝑥1 𝑥2 𝑥3 𝑥4. 

 

A linear function connecting the points 𝑓3(𝑋𝑜) and 𝑓3
∆(𝑋3

∗) in physical units, it characterizes 

the function 𝑓3(𝑋) in the four-dimensional dimension of the parameters 𝑥1 𝑥2 𝑥3 𝑥4.  

And in general, the segments are 𝑓3
∆(𝑋1

∗) - 𝑓3(𝑋𝑜) - 𝑓3
∆(𝑋3

0) represent the geometric interpola-

tion of the function𝑓3(𝑋) in the four-dimensional dimension of the parameters 𝑥1 𝑥2 𝑥3 𝑥4.  
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Stage 9.4. Geometric interpretation of the results of the solution of the VPMP – the fourth 

characteristic of the structure of the material in the design in physical units.  

The fourth characteristic of the structure of the material 𝑓4(𝑋). is presented in 6.1.4: 

𝑚𝑎𝑥 ℎ4(𝑌)21.004 − 0.0097𝑦1 − 0.841𝑦2 − 0.4326𝑦3 + 1.1723𝑦4 + 0166𝑦1𝑦2 +
0.085𝑦1𝑦3 − 0.0001𝑦1𝑦4 + 0.0523𝑦2𝑦3  + 0.0002𝑦2𝑦4 + 0.0006𝑦3𝑦4 − 0.0022𝑦1

2 +
0.0035𝑦2

2 + 0.006𝑦3
2 − 0.0311𝑦4

2}},  (6.33) 

Let us present a geometric interpretation of the function 𝑓4(𝑋) in physical units with variable 

coordinates {𝑥1 𝑥3} and with constant coordinates 𝑦2 = {49.54, 𝑦4 = 2.2}, taken from the optimal 

point 𝑌𝑜 (6.49) in Figure 6.11.  

The coordinates of the maximum point are 𝑋4
∗ = {𝑥1 = 36.70, 𝑥3 = 2.1} (in Figure 6.11 de-

noted as X4omax). The value of the objective function is 𝐹4
∗=FX4omax = 30.714. 

The coordinates of the minimum point are 𝑋4
0 = {𝑥1 = 62.71, 𝑥3 = 8}  (denoted as X4omin in 

Figure 6.11). The value of the objective function is 𝐹4
∗=FX4omin = −73.62.  

The coordinates of the point are 𝑋𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348} (in Figure 6.11 it is indicated 

as X4o0). The value of the objective function is 𝑓4(𝑋𝑜) - FX4o0 = 47.5.  

Optimum points: 𝑋4
∗ with four parameters calculated in step 1 and the value of the criterion is 

𝑓4
∗ = 𝑓4(𝑋4

∗)  = 30.714; point 𝑋4
0 with the value of the criterion  𝑓4

0 = 𝑓4(𝑋4
0) = −73.62 – The figure 

shows (𝑓4
∆(𝑋4

∗), 𝑓4
∆(𝑋4

0).  

 
Figure 6.11. Function 𝑓4(𝑋) in a two-dimensional coordinate system 𝑥1 𝑥3 and a geometric  

interpretation of the function 𝑓4(𝑋) in the coordinate system 𝑥1 𝑥2 𝑥3 𝑥4. 

 

A linear function connecting the points 𝑓4(𝑋𝑜) and 𝑓4
∆(𝑋4

∗) in physical units, it characterizes the 

function 𝑓4(𝑋) in the four-dimensional dimension of the parameters 𝑥1, … , 𝑥4.  

And in general, the segments are 𝑓4
∆(𝑋4

∗) - 𝑓4(𝑋𝑜) - 𝑓4
∆(𝑋4

0)  represent the geometric interpola-

tion of the function 𝑓4(𝑋) in the four-dimensional dimension of the parameters 𝑥1, … , 𝑥4. 

Taken together, the software version gives the following results: optimum point - 𝑋𝑜; 

characteristics (criteria) – 𝐹(𝑋𝑜) = {𝑓1(𝑋𝑜), 𝑓2(𝑋𝑜), 𝑓3(𝑋𝑜), 𝑓4(𝑋𝑜)}; 

 relative evaluations – (𝑋𝑜) = {1(𝑋𝑜),2(𝑋𝑜), 3(𝑋𝑜), 4(𝑋𝑜)};  

the maximum relative estimate 
𝑜
, such that 

𝑜
  𝑘(𝑋𝑞), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

the optimum point with the priority of the qth criterion is 𝑋𝑞; 

 characteristics (criteria) – 𝐹(𝑋𝑞) = {𝑓1(𝑋𝑞), 𝑓2(𝑋𝑞), 𝑓3(𝑋𝑞), 𝑓4(𝑋𝑞)};  
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relative evaluations – (𝑋𝑜) = {1(𝑋𝑞), 2(𝑋𝑞), 3(𝑋𝑞), 4(𝑋𝑞)};  

the maximum relative estimate 
𝑜𝑜

, such that 
𝑜𝑜
 𝑝𝑘

𝑞
 

𝑘
(𝑋𝑞), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Conclusion on the section. The problem of developing mathematical methods of vector opti-

mization and making an optimal decision based on them in a complex structure of the material based 

on a certain set of experimental data and functional characteristics is one of the most important tasks 

of system analysis and design. The paper develops a methodology for design automation by: building 

a mathematical model of the material under conditions of certainty and uncertainty; development of 

methods for solving a vector problem and selection of optimal material parameters for a variety of 

characteristics. 

7. Comparison of applied methods of multidimensional mathematics with methods of artifi-

cial intelligence.  

Let us evaluate the applied methods of multidimensional mathematics - {axiomatics of 

Mashunin Yu.K., principles of optimality and methods for solving vector problems of mathematical 

(convex) programming}, presented in the third and fourth sections of this work, and compare them 

with the methods of artificial intelligence. Using the theory of vector optimization, we obtained for 

an engineering system (in particular, a technical system, the structure of a material): 

 optimum point - 𝑋𝑜 = (𝑥𝑗
𝑜 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}; 

 characteristics (criteria) –  𝐹(𝑋𝑜) = {𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}; 

relative evaluations –  (𝑋𝑜) = {𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, which lie within 

{0  𝑘(𝑋𝑜)  1 (100%), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, and is easily translated into physical data. 

Can these results be obtained by artificial intelligence, which usually functions on the principle 

of brute force? The answer is, "No." Artificial intelligence can only get an approximate result that a 

person has set, but why this result is better than other results should also be evaluated by a person 

based on intuition.  

Thus, the developed theory of vector optimization can be the mathematical apparatus of com-

putational intelligence of artificial intelligence. 
 

Conclusions 

The problem of developing mathematical methods of multidimensional mathematics in appli-

cation to the vector problem of optimization and making an optimal decision on their basis of the 

structure of the material based on a certain set of functional characteristics and experimental data is 

one of the most important tasks of system analysis and design of the structure of the material. 

The paper develops a methodology for design automation by: building a mathematical model 

of an engineering system under conditions of certainty and uncertainty; development of methods for 

solving a vector problem. The construction of a mathematical and numerical model for the selection 

of optimal parameters of a complex technical system and material of a complex structure and their 

implementation by a variety of characteristics is presented 
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