Александров Виктор Иванович

к.в.н, доцент, доцент кафедры ТВВИКУ им. А.И.Прошлякова

Ханбеков Рифат Валентинович, преподаватель ТВВИКУ им. А.И.Прошлякова

Рылко Александр Григорьевич, преподаватель ТВВИКУ им. А.И.Прошлякова

Нохрин Борислав Михайлович, преподаватель ТВВИКУ им. А.И.Прошлякова

ПРЕДЛОЖЕНИЯ ПО СОВЕРШЕНСТВОВАНИЮ ЗЕМЛЕРОЙНЫХ МАШИН В УСЛОВИЯХ ЭКСПЛУАТАЦИИ НИЗКИХ ТЕМПЕРАТУР

Аннотация. В данной работе рассмотрены общие положения и основные направления совершенствования машин для фортификационного оборудования местности в условиях низких температур. Предложены варианты модернизации и повышения надежности существующих машин, изложены технические данные эксплуатации и обслуживания землеройных машин в районах низких температур. Рассмотрены эргономические требования, которые необходимо учитывать при разработке конструкции новой машины либо модернизации существующей. Перечислены землеройные машины способные выполнять задачи в условиях низких температур. Предлагается использовать в конструкциях машин, легированные, износостойкие, термообработанные стали. Для повышения надежности предложен вариант рабочего органа, внесены изменения в характеристики колес и покрышек базовой машины.

Ключевые слова: Машины для фортификационного оборудования, условия низких температур, конструкция рабочего органа, характеристика колёс, надежность, модернизация, землеройные машины.

Фортификационное оборудование в современных видах боевых действий осуществляется с целью обеспечить наиболее эффективное и полное использование боевых возможностей оружия и боевой техники, повысить защиту войск и объектов от оружия массового поражения и обычных средств, в том числе автоматизированных систем высокоточного оружия.

Характер и организация фортификационного оборудования позиций и районов расположения войск в каждом конкретном случае определяется назначением этих позиций и районов, составом войск их занимающих, составом и возможностями войск противника, условиями местности, времени года, силами и средствами, которыми будут располагать войска для выполнения задач по фортификационному оборудованию.

Фортификационное оборудование местности особенно в условиях низких температурах весьма сложная и трудоемкая задача. Наличие вечной мерзлоты, преобладание каменистых грунтов в большинстве районов, глубокое промерзание грунта, значительный снежный покров и метели, продолжительное ночное время — все эти и другие особенности существенно затрудняют инженерное оборудование местности.

Опыт учений показывает, что при промерзании грунтов на глубину 0,5м и более, производительность техники по разработке грунтов снижается более чем в 10 раз [2].

Изучение технических данных эксплуатации и обслуживания землеройных машин в районах низких температур показывает, что при несоблюдении специальных технических требований имеют место поломки и хрупкие разрушения. Недостаточная хладостойкость металла и чрезмерные нагрузки на механизмы, возникающие при разработке вечномерзлых грунтов, приводят к разрушению металлоконструкций и деталей машин.

Рабочие органы и ходовые устройства быстро изнашиваются в результате высокой абразивности и механической прочности мерзлых грунтов, усугубляемой наличием отдельных валунов и галечногравелистых включений.

При разработке мерзлых грунтов используются зубья с пластинами из твердого сплава ВК-15, а так же из стали 35Л, с наплавкой электродом Т-620. В районах низких температур могут использоваться разработанные ученым Готфильдом, насадки пластин зубьев из сталей высокомарганцовистой, аустенитной $75\Gamma13\Pi$, $110\Gamma13\Pi$, $110\Gamma13\Phi T\Pi$. Системы гидравлического и пневматического управления выходят из строя при несоответствии материалов, применяемых для их изготовления, условиям эксплуатации. Рекомендуется применение рабочей жидкости в гидравлических системах машин МГ-15Б, температурного диапазона от -60 градусов до +90 и вязкостью 10 мм/с [3].

Затруднительный пуск двигателя, низкая температура в кабине механика-водителя изза недостаточной герметизации и утепления, приводит к большим простоям и снижению производительности инженерной машины.

При разработке конструкции новой машины, предназначенной для работы при низких температурах должны учитываться конструктивные, технологические, эксплуатационные, экономические, а также следует уделить особое внимание эргономическим требованиям:

- 1. Наличию удобного сиденья, хорошего обзора и освещенности рабочего органа и фронта работы.
 - 2. Устранению вибрации и шума в зоне рабочего места.
- 3. Герметизации и надежной вентиляции кабины управления при работе в заснеженной среде.
- 4. Соблюдению благоприятного температурного режима и защите механикаводителя от воздействия внешней среды.

Учитывая, что в условиях низких температур из всех землеройных машин работоспособными являются только полковая землеройная машина ПЗМ-2 (рис.1), траншейная машина колёсная ТМК-3 (рис.2), войсковой одноковшовый экскаватор ЭОВ-4421 (рис.3), которые приняты на вооружение с 1980 года, следует обратить внимание на дальнейшую доработку, модернизацию, улучшение их конструкции.

Рис. 1 Полковая землеройная машина ПЗМ-2

Рис. 2 Траншейная машинам колесная ТМК-3

Рис. 3 Экскаватор одноковшовый ЭОВ-4421

В конструкциях деталей и узлов необходимо предусматривать использование легированных, износостойких, термообработанных сталей. Для уменьшения концентраций напряжений в валах и осях, следует назначать плавные переходы и повышенную чистоту поверхности, которая должна быть на класс выше, чем при обычном исполнении.

При расчете металлоконструкций, валов, осей, заклепочных и болтовых соединений, необходимо учитывать наличие повышенных динамических нагрузок на узлы машин и обеспечение работоспособности соединений, сопрягаемых деталей в диапазоне температур от -60 до +20 0 C.

Система смазки узлов и деталей должна быть централизованной, а число мест ручной смазки минимальным.

Привод рабочего органа полковой землеройной машины ПЗМ-2 должен быть гидравлическим, причем подача рабочей жидкости к гидромоторам рабочего органа и метателя, должна обеспечиваться гидронасосом переменной производительности. Необходимо обеспечить автоматическое регулирование рабочей жидкости и скорости резания, в зависимости от сопротивления на рабочий орган машины [2].

Конструкции рабочего органа, в том числе тяговых цепей и рамы, должна быть значительно упрощена и усилена по прочности. Для повышения надежности необходимо на машину поставить рабочий орган с цепями наружного зацепления, конструкции Красноярского СибНИИГГКМ см.рис. 4. Предлагаемый рабочий орган отличается простотой, имеет более прочные зубья, которые отличаются по форме и размещению на выгребных лопатках [1].

Рис. 4 Рабочий орган с цепями наружного зацепления

Для повышения силы тяжести по сцеплению, необходимо изменить ширину (400-500мм) и высоту протектора (30-40 мм) колес базовой машины возможные варианты предложены на рис.5.

Рис. 5 Покрышки колес базовой машины

Необходимо обеспечить работу машины без анкеров и возможность отрывки котлованов в мерзлых грунтах.

Особое внимание необходимо обратить на доработку кабины механика-водителя в северном исполнении (соц. требования). Конструкция кабины должна обеспечивать хороший обзор фронта работы и передвижения, надежную защиту от обледенения стекол и устройства для защиты лица механика-водителя от отраженных солнечных лучей.

Кабина должна быть теплоизолирована и снабжена надежными нагревательными устройствам, позволяющими поддерживать температуру в контрольной точке на уровне сиденья у переднего среза, по оси кабины не ниже $+\ 10\ ^{0}\mathrm{C}$.

Кабина также должна быть оборудована усиленным звуковым сигналом 80-90 дб., а также противотуманными фарами и прожектором, управляемым из кабины.

Рассмотрев общие положения и основные направления совершенствования машин для фортификационного оборудования местности в условиях низких температур можно сделать выводы о том, что необходимо повышать надежность деталей и узлов машин использованием легированных, износостойких, термообработанных сталей, выполнить доработку кабины механика-водителя, конструкцию рабочего органа, а также изменение характеристик колес базовой машины.

Список литературы:

- 1. Исследование и проектирование специальных транспортных средств // Сборник научных трудов Ордена Трудового Красного Знамени Московского автомобильно-дорожного института (МАДИ). Издание МАДИ,1988. 222 с.
- 2. Герц Е.В. Динамика пневматических систем машин М.: Машиностроение, Изд. 3 $2003.-458~\mathrm{c}.$
- 3. Н.А.Цытович «Механика мерзлых грунтов», Изд. «Высшая школа», Москва 1973. 156 с.

