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МНОГОМЕРНАЯ МАТЕМАТИКА.  

ТЕОРИЯ, МОДЕЛИРОВАНИЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ  

ВЫБОРА ОПТИМАЛЬНЫХ ПАРАМЕТРОВ ТЕХНОЛОГИЧЕСКИХ  

ПРОЦЕССОВ И МАТЕРИАЛОВЕДЕНИЯ 

MULTIDIMENSIONAL MATHEMATICS.  

THEORY, MODELING, SOFTWARE FOR SELECTING OPTIMAL PARAMETERS  

OF TECHNOLOGICAL PROCESSES AND MATERIALS SCIENCE 

 

Abstract. Цель работы представить теорию и методы многомерной математики в 

процессе исследования, проектирования и выбора оптимальных параметров инженерных 

систем. 

В математических моделях инженерных систем целенаправленность сформирована в 

виде множества характеристик (критериев), т.е. модели представлены задачами векторной 

оптимизации. В рамках теория векторной оптимизации представлены принципы 

оптимальности решения векторных задач при равнозначных критериях и при заданном 

приоритете критерия https://rdcu.be/bhZ8i. (Работа "Vector optimization with equivalent and 

priority criteria" Springer Nature распространяется бесплатно.).  

В работе разработана теория и конструктивные методы многомерной математики: 

решение векторных (многокритериальных) задач математического программирования, во-

первых, при равнозначных критериях (характеристик инженерных систем), во-вторых, при 

заданной числовой величине приоритетного (представляющего интерес для разработчика) 

критерия.   

На базе теории многомерной математики представлена методология моделирования 

многопараметрических и многофункциональных инженерных систем, которые включают 

технические системы, технологические процессы, структура материала. Методология 

включает. 1. Построение математической модели инженерной системы в условиях 

определенности и неопределенности. 2. Разработки конструктивных методов решения 

векторной задачи. 3. Разработки и построения численной модели инженерной системы для 

выбора оптимальных параметров (много параметрической и много функциональной 

инженерной системы). 4. Представлена численная реализация модели технологического 

процесса при равнозначных критериях и с заданным приоритетом критерия. 5. Представлена 

численная реализация модели структуры материала при равнозначных критериях и с 

заданным приоритетом любого критерия. 6. Представлена геометрическая интерпретация 

результатов решения при моделировании в трехмерной системе координат четырех 

характеристик (критериев) в относительных и физических единицах в технологическом 

процессе и материаловедении. 

 

http://em.rdcu.be/wf/click?upn=lMZy1lernSJ7apc5DgYM8UuVK2DBnTY7J0F4f8VYnos-3D_E7GXjwAkq5VvFJ1c-2FBIDPrOP8Z8A6FSxiek2J3pnMVu6jQS1hJJ-2FU5UPfFRKkwBNIHdCmtiE26-2BQlyx-2BMozTnuip1S6VAiSMUfcUwyaD94rZMMzChza77Ppk6LfVGrj5HLx9SAUiDpJuM1eAS3ckyoMqZlgianxLCuG3qUiLIMNOnVsrnh3Ay5IAtz2ysEAqyM58rLDhjmcuxWGu5a8PrortYUC6qdUQhepPyud8i-2BNq5kIv9C6nmHakH019-2Be0rF4L5Pu8WaP7jiXc0-2BezGJQ-3D-3D


Раздел журнала: Математические и естественные науки 

Направление исследования: Физико-математические науки 

 

Международный научный журнал "Вектор научной мысли" №2(31) Февраль 2026 

www.vektornm.ru | 8 (812) 905 29 09  |  info@vektornm.ru 

Abstract: The purpose of the work is to present the theory and methods of multidimensional 

mathematics in the process of research, design and selection of optimal parameters of engineering 

systems. The theory and methods of multidimensional mathematics can be the mathematical 

apparatus of computational intelligence within the framework of artificial intelligence. In 

mathematical models of engineering systems, purposefulness is formed in the form of a set of 

characteristics (criteria), i.e. models are represented by vector optimization problems. Within the 

framework of the theory of vector optimization, the principles of optimality of solving vector 

problems with equivalent criteria and with a given priority of the criterion are presented 

https://rdcu.be/bhZ8i. (The work "Vector optimization with equivalent and priority criteria» by 

Springer Nature is distributed free of charge.).  

The paper develops the theory and constructive methods of multidimensional mathematics: 

the solution of vector (multi-criteria) problems of mathematical programming, firstly, with equivalent 

criteria (characteristics of engineering systems), and secondly, with a given numerical value of the 

priority (of interest to the developer) criterion. On the basis of the theory of multidimensional 

mathematics, a methodology for modeling multiparameter and multifunctional engineering systems 

is presented, which include technical systems, technological processes, and material structure. The 

methodology includes. 1. Construction of a mathematical model of an engineering system in 

conditions of certainty and uncertainty. 2. Development of constructive methods for solving a vector 

problem. 3. Development and construction of a numerical model of an engineering system for the 

selection of optimal parameters (many parametric and many functional engineering systems). 4. The 

numerical implementation of the technological process model with equivalent criteria and with a 

given priority of the criterion is presented. 5. A numerical implementation of the material structure 

model with equivalent criteria and with a given priority of any criterion is presented. 6. A geometric 

interpretation of the solution results in modeling four characteristics (criteria) in relative and physical 

units in the technological process and materials science in a three-dimensional coordinate system is 

presented. 

Ключевые слова: Многомерная математика, Теория векторной оптимизации, Методы 

принятия оптимальных решений, Моделирование инженерной системы, Геометрическая 

интерпретация многомерных систем. 

Keywords: Multidimensional Mathematics, Theory of Vector Optimization, Methods for 

Making Optimal Decisions, Modeling of an Engineering System, Geometric Interpretation of 

Multidimensional Systems. 

 

Introduction 

При исследовании развития производственных и инженерных систем выясняется, что 

они (системы) зависят от некоторого числового множества функциональных характеристик, 

которые в совокупности определяют многомерность исследуемой системы. Эту 

многомерность необходимо учитывать на стадии проектирования и моделирования. Анализ и 

исследование множества инженерных, экономических систем показало, что улучшение по 

одной из характеристик системы приводит к ухудшению других характеристик. А для 

улучшения функционирования системы:  

во-первых, требуется решение проблемы, при которой в исследуемой системе одно 

подмножество характеристик (критериев) было направлено на увеличение числового значения 

(максимизацию), а второе подмножество характеристик (критериев) системы было 

направлено на уменьшение числового значения (минимизацию);  

во-вторых, необходимо, чтобы все характеристики улучшались в совокупности. 

В настоящее время известно решение однокритериальной оптимизации, которую можно 

трактовать как одномерную оптимизацию.  

Исследования многокритериальных задач началось более ста лет тому назад в работе Pareto 

V. [1]. В последние три десятилетие методам решения векторных (многокритериальных) задач 

посвящено большое количество монографий и отдельных статей. Это связано с широким 

http://em.rdcu.be/wf/click?upn=lMZy1lernSJ7apc5DgYM8UuVK2DBnTY7J0F4f8VYnos-3D_E7GXjwAkq5VvFJ1c-2FBIDPrOP8Z8A6FSxiek2J3pnMVu6jQS1hJJ-2FU5UPfFRKkwBNIHdCmtiE26-2BQlyx-2BMozTnuip1S6VAiSMUfcUwyaD94rZMMzChza77Ppk6LfVGrj5HLx9SAUiDpJuM1eAS3ckyoMqZlgianxLCuG3qUiLIMNOnVsrnh3Ay5IAtz2ysEAqyM58rLDhjmcuxWGu5a8PrortYUC6qdUQhepPyud8i-2BNq5kIv9C6nmHakH019-2Be0rF4L5Pu8WaP7jiXc0-2BezGJQ-3D-3D
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использованием этих методов в решении практических задач. Анализ методов и алгоритмов 

решения многокритериальных задач в соответствии со своей классификацией представлен в 

ряде работ [6, 10, 22, 39, 45, 46]: методы решения многокритериальных задач, основанные на 

свертывании критериев с весовыми коэффициентами [3, 5, 25, 27]. Исследование 

многокритериальной оптимизации проводилось как на теоретическом уровне зарубежными [3, 

25-30] и русскими авторами [4-23], так и на решении практических задач сначала в области 

экономики [31-45], а за тем в области инженерных систем [6-21, 46]. Впервые теория и методы 

решения векторных задач математического программирования (ВЗМП) разработаны автором 

в [6] и подтверждены в [20] 1. 

Решение проблемы векторной оптимизации обусловлено рядом трудностей, причем 

концептуального характера, и главная из них понять: «что значит решить задачу векторной 

оптимизации». Для решения проблемы с множеством критериев математически необходимо 

создание, во-первых, аксиоматики и принципов оптимальности, показывающих любому 

пользователю, в чем одно решение лучше другого решения, и, что такое оптимальное решение 

многокритериальной (т.е. со многими характеристиками) оптимизационной задачи. А на 

следующем этапе на базе аксиоматики и принципов оптимальности разработки 

конструктивных методов решения многокритериальных задач. 

Цель работы представить теорию и методы многомерной математики в процессе 

исследования, проектирования и выбора оптимальных параметров инженерных систем, в 

которых целенаправленность математической модели инженерной системы сформирована в 

виде множества характеристик (критериев).   

В работе в рамках теории векторной оптимизации сформулированы аксиомы и 

представлены принципы оптимальности решения векторных задач при равнозначных 

критериях и при заданном приоритете критерия. В прикладной части представлены 

конструктивные методы принятия оптимальных решений, методы решения векторных задач 

для моделирования технические системы [11-14, 18, 19], технологические процессы [15, 21], 

материалы [17], которые описаны множеством функциональных характеристик. 

Методология включает. 1. Построение математической модели инженерной системы в 

условиях определенности и неопределенности. 2. Разработки конструктивных методов 

решения векторной задачи. 3. Разработки и построения численной модели инженерной 

системы для выбора оптимальных параметров (много параметрической и много 

функциональной инженерной системы). 4. Представлена численная реализация модели 

технологического процесса при равнозначных критериях и с заданным приоритетом критерия. 

 
1  

Dear Author, 

Congratulations on publishing "Vector optimization with equivalent and priority criteria" in Journal of Computer and Systems Sciences 

International. As part of the Springer Nature Content Sharing Initiative, you can now publicly share full-text access to a view-only 

version of your paper by using the following SharedIt link: https://rdcu.be/bhZ8i 

Readers of your article via the shared link will also be able to use Enhanced PDF features such as annotation tools, one-click 

supplements, citation file exports and article metrics. 

We encourage you to forward this link to your co-authors, as sharing your paper is a great way to improve the visibility of your 

work. Click here for more information on Springer Nature’s commitment to content sharing and the SharedIt initiative. 

Sincerely, Springer Nature  

The Springer Nature SharedIt Initiative is powered by  technology. 
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5. Представлена численная реализация модели структуры материала при равнозначных 

критериях и с заданным приоритетом любого критерия. 6. Представлена геометрическая 

интерпретация результатов решения при моделировании в трехмерной системе координат 

четырех характеристик (критериев) в относительных и физических единицах в 

технологическом процессе и материаловедении.  

1. Математическое моделирование инженерных систем на базе задач векторной 

оптимизации.  

В качестве объекта исследования нами рассматриваются «Инженерные системы», к 

которым относятся «технические системы», «технологические процессы», «материалы», [18, 

19-23]. Исследование инженерной системы выполнено,  

во-первых, в условиях определенности, когда известны данные о функциональных 

характеристиках инженерной системы;  

во-вторых, в условиях неопределенности, когда известны дискретные значения 

отдельных характеристик; также известны данные об ограничениях, которые накладываются 

на функционирование системы.  

1.1. Математическая модель технической системы для принятия оптимального 

управленческого решения  

1.1.1. Проблемы моделирования при проектировании новых технических систем  

При проектировании новых технических систем возникает проблема построения в явном 

или не явном виде математической модели, оценки на ее основе результатов моделирования и 

принятия оптимального решения. аналогичные проблемы возникают и на уже созданных 

технических систем (ТС), которые при эксплуатации должны постоянно модернизироваться и 

заменяться на более совершенные модели. Проблеме моделирования ТС (в том числе с 

использованием векторной оптимизации) уделяется большое внимание, во-первых, в 

отечественной науке, начиная с ведущих научных школ АН СССР по настоящее время [4-23, 

38-45], которые внесли большой вклад в применение методов многокритериальной 

оптимизации, и, во-вторых, в зарубежной научной деятельности как теоретических [1, 2, 3, 24-

33], так и прикладных аспектах [34-38]. 

При формировании математической модели ТС возможны ситуации, когда известна 

функциональная зависимость каждой характеристики и ограничений от параметров ТС, такую 

математическую модель принято называть моделью в условиях полной определенности. Эти 

математической модели относятся к классу: хорошо структурированные задачи.  В тех 

случаях, когда нет достаточной информации о функциональной зависимости каждой 

характеристики и ограничений от параметров, определяются, как моделирование в условиях 

неопределенности. Эти математической модели относятся к классу: плохо структурированных 

задач, [12 - 18]. В плохо структурированных задачах устранение неопределенности может 

идти в двух направлениях: первое связано с использованием субъективных оценок и 

предпочтительности лица, принимающего решения, (ЛПР) при оценке вариантов возможных 

решений [22]; второе направление устранения неопределенности связано с качественными или 

количественными описаниями ИС и  характеризуется использованием математических 

методов, регрессионного анализа для  преобразования информации – исходных данных, 

которые могут быть получены, например, по принципу «вход-выход». В рамках второго 

направления проведено данное исследование. Оценка экспериментальных данных 

выполняется по некоторому множеству характеристики (критериев) и принятия решений, на 
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их основе, [34]. Принятие решений на основе таких критериев затруднена, сто связано с 

несоизмеримостью критериев. Анализ этих проблем представлен в работах [6, 10, 22]. В итоге 

решение принимается на интуитивной основе. Поэтому является важным разработка новых 

методов моделирования технических систем, оценки исходных данных и принятия решений 

на их основе.  

Цель этой главы направлена на разработку методики построения математической 

модели технической системы в виде векторной задачи математического программирования. 

1.1.2. Математическая модель технической системы в условиях определенности 

Функционирование любой ТС зависит от некоторого множества N конструктивных 

параметров (переменных): 

𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁}𝑇  или 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} , которые могут изменяться в некоторых 

пределах: 𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤  𝑥𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅, где 𝑥𝑗
𝑚𝑖𝑛 −  нижний,  𝑥𝑗

𝑚𝑎𝑥 , ∀ 𝑗 ∈ 𝑁 – верхний предел, 

в рамках которых изменяются параметры технической системы. 

Результат функционирования ИС определяется некоторым множеством К технических 

характеристик (критериев), которые функционально зависят от проектируемых данных 

(параметров) 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}, в целом они представляют вектор функцию: 

𝐹(𝑋)  =  {𝑓1(𝑋), 𝑓2(𝑋), . . . , 𝑓𝐾(𝑋)}𝑇 или 𝐹(𝑋)  = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}𝑇, 

на которые наложены функциональные ограничения:  

𝑓𝑘
𝑚𝑖𝑛  ≤  𝑓𝑘(𝑋) ≤ 𝑓𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. или 𝐺(𝑋) ≤ 𝐵. 

Множество критериев (характеристик) технической системы состоит из двух 

подмножеств K1 и K2: 𝑲 = 𝑲1 ∪ 𝑲2  технических характеристик. В подмножестве 

технических характеристик 𝑲1 их числовые значения желательно получить как можно выше, 

т.е. максимизировать: 

𝑓𝑘(𝑋) → 𝑚𝑎𝑥, 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ , а подмножество технических характеристик 𝑲2 , числовые 

значения которых желательно получить как можно ниже, т.е. минимизировать: 

𝑓𝑘(𝑋) → 𝑚𝑖𝑛, 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ , 𝑲2 ≡ 𝐾1 + 1, 𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  .  

Математическая модель ИС, во-первых, должна включать характеристики системы 

𝐹(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}𝑇  𝑲 = 𝑲1 ∪ 𝑲2 и ограничения на параметры: 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥.  

Математическую модель ТС, решающую в целом проблему выбора оптимальных 

параметров ТС (оптимального проектного решения), представим в виде Векторной Задачи 

Математического Программирования (ВЗМП):  

𝑂𝑝𝑡 𝐹(𝑋)  =  {𝑚𝑎𝑥 𝐹1(𝑋) = {𝑚𝑎𝑥 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ },                       (1a) 

𝑚𝑖𝑛 𝐹2(𝑋) = {𝑚𝑖𝑛 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }},                      (2a) 

при ограничениях: 𝐺(𝑋) ≤ 0, 𝑓𝑘
𝑚𝑖𝑛  ≤  𝑓𝑘(𝑋) ≤ 𝑓𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                (3a) 

𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤  𝑥𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅,                                  (4a) 

где 𝑋 – вектор управляемых переменных (управляемых параметров);  

𝐹(𝑋) = {𝑓𝑘, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} – вектор критериев, в котором каждая компонента представляет 

характеристику технической системы (1a)-(2a), функционально зависящую от переменной 𝑋;  

 В (3.3а) 𝐺(𝑋) = 𝑔1(𝑋), 𝑔2(𝑋), . . . , 𝑔𝑀(𝑋)}𝑇  – вектор-функция ограничений, 

накладываемых на функционирование ТС. Они определяются протекающими в ней 

технологическими, физическими и тому подобными процессами и могут быть представлены 

функциональными ограничениями, например, 𝑓𝑘
𝑚𝑖𝑛  ≤  𝑓𝑘(𝑋) ≤ 𝑓𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 
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Предполагается, что функции 𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ дифференцируемы и выпуклы, 𝑔𝑖(𝑋), 𝑖 =

1, 𝑀̅̅ ̅̅ ̅̅  непрерывны, а заданное ограничениями (3а)-(4а) множество допустимых точек не пусто: 

𝑺 = {𝑋Î𝑅𝑛|𝐺(𝑋) ≤ 0, 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥} ≠ ∅ и представляет собой компакт. 

Критерии и ограничения (1а)-(4а) образуют математическую модель технической 

системы. Требуется найти такой вектор параметров 𝑋𝑜Î𝑺, при котором каждая компонента 

вектор - функции 𝐹(𝑋) : 𝐹1(𝑋) = {𝑓𝑘𝑋), 𝑘 = 1, 𝐾1}̅̅ ̅̅ ̅̅ ̅  принимает максимальное значение, а 

вектор функция 𝐹2(𝑋) = {𝑓𝑘𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ } принимает наименьшую величину.  

Для решения такого класса векторных задач математического программирования 

используются методы, основанные на нормализации критериев и принципе гарантированного 

результата представленные в четвертой части.  Они позволяют решать ВЗМП как при 

равнозначных критериях, так и при заданном приоритете критерия.  

1.1.3. Проблемы построения модели технической системы в условиях 

определенности и неопределенности в совокупности 

При построении математической модели ТС (1а)-(4а) возможны два варианта.  

Первых вариант, когда известна функциональная зависимость каждого критерия (1а)-

(2а), ограничений (3а)-(4а) от параметров, накладываемых на функционирование – её принято 

называть моделью в условиях определенности, которые представлены моделью (1а)-(4а). 

Второй вариант, когда нет достаточной информации о функциональной зависимости 

каждого критерия (1а)-(2а) и ограничений (3а)-(4а) от параметров. Известны лишь дискретные 

(как правило, экспериментальные) данные: 𝑋𝑖 = |

𝑥𝑖1, … , 𝑥𝑖𝑁

…
𝑥𝑖1, … , 𝑥𝑖𝑁

| , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ , где 𝑁  множество 

параметров, 𝑀 множество данных, или  𝑋𝑖 = {𝑥𝑖𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ }.  

Представлено также соответствующее дискретное множество характеристик:  

𝐼𝑖(𝑋) = {(𝑦𝑘(𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , = |
𝑦𝑖1(𝑋𝑖), … , 𝑦𝑖𝐾(𝑋𝑖)

…
𝑦𝑖1(𝑋𝑖), … , 𝑦𝑖𝐾(𝑋𝑖)

|. 

Такое состояние представляет моделирование технической системы в условиях 

неопределенности. Для получения данных 𝐼𝑖(𝑋) = {(𝑦𝑘(𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇  проводятся 

экспериментальные исследования технической системы по принципу «вход-выход», при этом 

формируется задача принятия решений в условиях неопределенности и возникает проблема 

выбора оптимальной оценки на основе полученных данных.  

1.1.4. Построения математической модели технической системы в условиях 

определенности и неопределенности в совокупности 

В реальной жизни условия определенности и неопределенности совмещаются. Модель 

технической системы так же должна отражать эти условия. Используя обозначения 

математической модели, преобразуем модель (1а)-(4а) с учетом условий неопределенности, в 

итоге получим:  

«Модель технической системы в условиях определенности и неопределенности»: 

𝑂𝑝𝑡 𝐹(𝑋)  =  {𝑚𝑎𝑥 𝐹1(𝑋) = {𝑚𝑎𝑥 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                    (5а) 

    𝑚𝑎𝑥 𝐼1(𝑋) ≡ {𝑚𝑎𝑥 𝑦𝑘 (𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},       (6а)  

    𝑚𝑖𝑛 𝐹2(𝑋) = {𝑚𝑖𝑛 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

,                      (7а)  
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𝑚𝑖𝑛 𝐼2(𝑋) ≡ {𝑚𝑖𝑛 𝑦𝑘 (𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},                        (8а)  

ограничения   𝑓𝑘
𝑚𝑖𝑛  ≤  𝑓𝑘(𝑋) ≤ 𝑓𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                         (9а) 

𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤  𝑥𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅,                                     (10а) 

где 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}  — это вектор управляемых переменных (параметров) технической 

системы;  

𝐹(𝑋) = {𝐹1(𝑋) 𝐹2(𝑋) 𝐼1(𝑋) 𝐼2(𝑋)}  представляет векторный  критерий, каждая 

компонента которого является вектором критериев (характеристик) ТС (5а)-(8а), которые 

функционально зависят от дискретных значений вектора переменных 𝑋, где в (5а) и (7а) 

 𝐾1
𝑑𝑒𝑓

, 𝐾2
𝑑𝑒𝑓

 (definiteness), а в (6а) и (8а) 𝐾1
𝑢𝑛𝑐, 𝐾2

𝑢𝑛𝑐 (uncertainty) множество критериев max и 

min сформированные в условиях определенности и определенности.   

1.1.5. Пример. Моделирование и оптимизация параметров магнитоэлектрических 

линейных индукторных электродвигателей (ЛД) на постоянном токе 

К содержательному классу технических систем, которые могут быть представлены 

векторной задачей (5а)-(10а), можно отнести достаточно большое их количество задач из 

различных отраслей экономики государства: электротехнической, авиационно-космической, 

металлургической (выбор оптимальной структуры материала), химической и т.п.  

В качестве примера представим работу Левицкого В. Л. «Моделирование и 

оптимизация параметров магнитоэлектрических линейных индукторных электродвигателей 

(ЛД) постоянного тока» [7, с.50-120]. Проектировалась конструкция – форсируемый ЛД 

(ФЛД), модель которого была сведена к векторной задаче математического программирования 

(1а)-(4а). При этом вектор конструктивных параметров 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥5} состоял из: 𝑥1 – 

воздушного зазора δ, 𝑥2 – зубцового шага, 𝑥3 – числа зубцов, 𝑥4 – высоты концентратора, 

𝑥5 – коэффициента полюсного перекрытия. Вектор конструктивных критериев 𝐹(𝑋) = 𝑓(𝑋),

𝑝(𝑋), 𝜗(𝑋), …  включал: 𝑓(𝑋)  – номинальное тяговое усилие, 𝑝(𝑋)  – номинальную 

мощность, 𝜗(𝑋)  – номинальный КПД и т.п., всего десять показателей. Для построения 

зависимостей 𝐹(𝑋)  от названных конструктивных параметров 𝑋  был использован 

центральный ортогональный план второго порядка [7 с.96]. Из другой отрасли представим 

работу: «… многокритериальная оптимизация статических режимов массообменных 

процессов на примере абсорбции в производстве газоразделения», [23].  

Таким образом, экспериментальные данные, как из задачи ФЛД, так и подобных ТС из 

других отраслей, могут быть представлены в виде теоретической (системной) задачи (1а)-(4а). 

В данной работе техническая система рассматриваются в статике. Технические системы 

могут рассматриваться в динамике, используя дифференциально-разностные методы 

преобразования за небольшой дискретный промежуток времени Δt ∈ T. 

1.2. Математическое моделирование технологического процесса для принятия 

оптимального управленческого решения  

1.2.1. Математическая модель технологического процесса в условиях 

определенности 

В качестве объекта исследования инженерных систем мы используем «технологический 

процесс». Постановка проблемы принятия решений в технологии при производстве изделий 

выполнена в соответствии с [15]. 
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Рассматривается технологический процесс (например, Гибридная лазерная дуговая 

сварка (HLAW) (Hybrid Laser Arc Welding (HLAW), [68], в которой сплав ZE41-T5 был выбран 

как материал, который нужно сварить с сплавом AZ61 как материал заполнителя). 

Деятельность технологического процесса зависит от определенного множества условий - 

конструктивных параметров: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁}𝑇 , or 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} , (например: 

мощности лазера, (laser power); скорости перемещения (travel speed); скорости подачи 

проволоки, (wire feed rate); тока, (current); частоты (frequency)). Обозначим N - множество 

конструктивных параметров. Каждый параметр технологического процесса лежит в заданных 

пределах: 𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤  𝑥𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅ , или 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 , где 𝑥𝑗
𝑚𝑖𝑛,  𝑥𝑗

𝑚𝑎𝑥,𝑗Î𝑵  - 

нижний и верхний пределы изменения вектора параметров технологического процесса, 𝑵 - 

множество параметров. 

Результат функционирования определяется набором критериев (технологических 

характеристик): 

 𝐹(𝑋)  = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}𝑇 , которые функционально зависят от конструктивных 

параметров технологического процесса 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}, (например: глубина сварного шва 

(weld depth); недозагрузка (underfill); процентный дефект (percentage defect); накопленная 

длина пор (total accumulated pore length)). В совокупности все технологические характеристики 

представляют вектор-функцию:  

𝐹(𝑋) = {𝑓1(𝑋), 𝑓2(𝑋), . . . , 𝑓𝐾(𝑋)}𝑇 или  𝐹(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}𝑇, 

где К, (К) – множество (число) технологических характеристик. 

 Множество технологических характеристик К подразделяется на подмножества 𝑲𝟏, 𝑲𝟐: 

𝑲 = 𝑲𝟏 𝑲𝟐, 𝑲𝟏 𝑲, 𝑲𝟐 𝑲.  

𝑲𝟏  представляет подмножество технологических характеристик, числовые величины 

которых желательно получить, как можно выше: 𝑓𝑘(𝑋) → 𝑚𝑎𝑥, 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ . 

𝑲𝟐  представляет подмножества технологических характеристик, числовые величины 

которых желательно получить, как можно ниже: 𝑓𝑘(𝑋) → 𝑚𝑖𝑛, 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ . 

Математическая модель должна, во-первых, отражать цели технологического процесса, 

которые представлены характеристиками 𝐹(𝑋), во-вторых, учитывать ограничения 𝑋𝑚𝑖𝑛 ≤

𝑋 ≤ 𝑋𝑚𝑎𝑥. Математическая модель технологического процесса, в целом решающего проблему 

выбора оптимальных параметров технологического процесса, представить в виде векторной 

задачи оптимизации.  

𝑂𝑝𝑡 𝐹(𝑋)  =  {𝑚𝑎𝑥 𝐹1(𝑋) = {𝑚𝑎𝑥 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ },                            (1b) 

𝑚𝑖𝑛 𝐹2(𝑋) = {𝑚𝑖𝑛 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }},                          (2b) 

при ограничениях: 𝑓𝑘
𝑚𝑖𝑛  ≤  𝑓𝑘(𝑋) ≤ 𝑓𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                               (3b) 

𝐺(𝑋) ≤ 0, 𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤  𝑥𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅,                         (4b) 

где 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}, — это вектор управляемых переменных (конструктивных параметров) 

технологического процесса;  

𝐹(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}  – это векторный критерий, каждая компонента которого 

представляет характеристику технологического процесса (1b)-(2b), функционально 

зависящую от вектора переменных X;  

в (3.3b) 𝐺(𝑋)  = {𝑔𝑖(𝑋), 𝑘 = 1, 𝑀̅̅ ̅̅ ̅̅ }𝑇 – вектор-функция ограничений, накладываемых на 

функционирование технологического процесса, M – множество ограничений. Ограничения 
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определяются протекающими в них технологическими, физическими и тому подобными 

процессами и могут быть представлены функциональными ограничениями, например, 

𝑓𝑘
𝑚𝑖𝑛  ≤  𝑓𝑘(𝑋) ≤ 𝑓𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Предполагается, что функции 𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ дифференцируемы и выпуклы, 𝑔𝑖(𝑋), 𝑖 =

1, 𝑀̅̅ ̅̅ ̅̅  непрерывны, а 𝑺 = {𝑋Î𝑅𝑛|𝐺(𝑋) ≤ 0, 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥} ≠ ∅.. 

Соотношения (1b)-(4b) образуют математическую модель технологического процесса.  

Требуется определить такой вектор параметров 𝑋𝑜Î 𝑺, при котором каждая компонента 

вектор – функции: 

 𝐹1(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ }  принимает максимально возможное значение, а вектор – 

функция: 𝐹2(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ } принимает минимальное значение. 

1.2.2. Математическая модель технологического процесса в условиях 

определенности и неопределенности в совокупности 

Математическая модель технологического процесса (1b)-(4b) выполнена в условиях 

определенности. В реальной жизни условия определенности и неопределенности 

совмещаются. Модель технологического процесса так же должна отражать эти условия. 

Используя обозначения математической модели, преобразуем моделью (1b)-(4b) с учетом 

условий неопределенности, в итоге получим:  

«Модель технологического процесса в условиях определенности и неопределенности»: 

𝑂𝑝𝑡 𝐹(𝑋)  =  {𝑚𝑎𝑥 𝐹1(𝑋) = {𝑚𝑎𝑥 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                    (5b) 

    𝑚𝑎𝑥 𝐼1(𝑋) ≡ {𝑚𝑎𝑥 𝑦𝑘 (𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},       (6b)  

                         𝑚𝑖𝑛 𝐹2(𝑋) = {𝑚𝑖𝑛 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

,                      (7b)  

𝑚𝑖𝑛 𝐼2(𝑋) ≡ {𝑚𝑖𝑛 𝑦𝑘 (𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},       (8b)  

ограничения   𝑓𝑘
𝑚𝑖𝑛  ≤  𝑓𝑘(𝑋) ≤ 𝑓𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                           (9b) 

𝐺(𝑋) ≤ 0, 𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤  𝑥𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅,                    (10b) 

где 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}  — это вектор управляемых переменных (параметров) 

технологического процесса;  

𝐹(𝑋) = {𝐹1(𝑋) 𝐹2(𝑋) 𝐼1(𝑋) 𝐼2(𝑋)}  представляет векторный  критерий, каждая 

компонента которого является вектором характеристик (критериев) технологического 

процесса (5b)-(8b), которые функционально зависят от дискретных значений вектора 

переменных, где 𝑋  в (5b) и (7b) 𝐾1
𝑑𝑒𝑓

, 𝐾2
𝑑𝑒𝑓

 (definiteness), а в (6b) и (8b) 𝐾1
𝑢𝑛𝑐 , 𝐾2

𝑢𝑛𝑐 

(uncertainty) множество критериев max и min сформированные в  условиях определенности и 

определенности. 

1.3. Математическая модель структуры материала для принятия оптимального 

управленческого решения  

1.3.1. Проблема моделирования структуры материала 

Химический состав материала изделия определяется (на единицу объема, веса) 

процентным содержанием некоторого множества компонент материала, которые в сумме 

равны ста процентам. Состав материала, характеризуется определенным набором 

функциональных характеристик, которые включают в себя механические и физико-

химические свойства материалов. Одна группа свойств (функциональных характеристик) 
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материала характеризуется тем, что их желательно по своей числовой величине получить как 

можно больше (например, прочность), другая группа свойств характеризуется тем, что их 

желательно по своей числовой величине получить как меньше. Улучшение по одной из этих 

характеристик приводит к ухудшению другой. В целом требуется подобрать такой состав 

материала, чтобы все свойства материала были как можно лучше в совокупности. 

1.3.2. Математическая модель структуры материала в условиях определенности 

Рассматривается состав материала какого-либо изделия, технической системы, которая 

зависит от ряда компонент материала: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑉} , где 𝑽  - множества компонент 

материала, 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑉̅̅ ̅̅ ̅} , 𝑉  - число компонент, из которых может быть составлен 

(изготовлен) материал, 𝑦𝑣  - величина в процентах v-ой  компоненты материала, которая 

лежит в заданных пределах: 𝑦𝑣
𝑚𝑖𝑛𝑦𝑣 𝑦𝑣

𝑚𝑎𝑥, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅, где 𝑦𝑣
𝑚𝑖𝑛, 𝑦𝑣

𝑚𝑎𝑥, ∀𝑣 ∈ 𝑉 – это нижний 

и верхний пределы изменения вектора компонент материала. 

 ∑ 𝑦𝑣
𝑉
𝑣=1 = 100%, сумма всех компонент материала равна ста процентам. 

Состав материала оценивается набором (множеством) 𝐾  физических свойств 

материала: 𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} , которые функционально зависят от конструктивных 

параметров: 𝑌 = {𝑦𝑣, 𝑘 = 1, 𝑉̅̅ ̅̅ ̅}𝑇; 

𝑘 - индекс вида физического свойства материала, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, где 𝐾 - число видов свойств 

(функциональных характеристик) материала, представим их в виде вектор - функции. 

𝐻(𝑌) представляет вектор-функцию (векторный критерий), имеющая 𝐾 – компонент-

функций, (К - мощность множества К): 𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} . Множество физических 

свойств материала 𝑲 включает подмножество 𝑲1 компонент максимизации и подмножество 

𝑲2 компонент минимизации: 𝑲 = 𝑲1𝑲2;  

𝐻1(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ }  – векторный критерий, в котором каждая компонента 

максимизируется, 𝑲1 – это число критериев, а 𝐾11, 𝐾1
̅̅ ̅̅ ̅̅ - множество критериев максимизации. 

Предполагаем, что 𝐻1(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ }  непрерывные вогнутые функции (иногда 

будем их называть критериями максимизации); 

𝐻2(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }  - это векторный критерий, каждая компонента которого 

минимизируется, 𝐾2𝐾1 + 1, 𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 1, 𝐾2
̅̅ ̅̅ ̅̅   - множество критериев минимизации, 𝐾2  – число. 

Предполагаем, что ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ - непрерывные выпуклые функции, будем иногда их 

называть критериями минимизации: 𝑲 = 𝑲1𝑲2, 𝑲1 𝑲, 𝑲2 𝑲. 

Характеристики материала 𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}  мы используем как критерии, а 

пределы изменения, накладываемые на каждый вид компонент, как параметрические 

ограничения. Математическая модель материала, которая решает в целом проблему выбора 

оптимальной структуры материала (оптимального проектного решения), представим в виде 

векторной задачи оптимизации: 

𝑂𝑝𝑡 𝐹(𝑋)  =  {𝑚𝑎𝑥 𝐻1(𝑋) = {𝑚𝑎𝑥 ℎ𝑘 (𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ },   (1c) 

𝑚𝑖𝑛 𝐻2(𝑋) = {𝑚𝑖𝑛 ℎ𝑘 (𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }},                 (2c) 

при ограничениях:  𝐺(𝑌) ≤ 0, ℎ𝑘
𝑚𝑖𝑛  ≤  ℎ𝑘(𝑋) ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                (3c) 

   ∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100%, 𝑦𝑣

𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣
𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,      (4c) 

где 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑉̅̅ ̅̅ ̅} - вектор компонент материала (переменных); 

𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} - векторный критерий, каждая функция которого представляет 

характеристику материала, функционально зависящую от вектора переменных Y;  

𝐺(𝑌) = {𝑔1(𝑌), … , 𝑔𝑀(𝑌)}𝑇  - вектор-функция ограничений, накладываемых на 

структуру материала, 𝑴 – множество ограничений.  
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Предполагается, что функции 𝐻(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}  дифференцируемы и выпуклы, 

𝐺(𝑌) = {𝑔𝑖(𝑌), 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅  }𝑇 непрерывны, а заданное ограничениями (3c)-(4c) множество точек 

S не пусто, представляет собой компакт: 𝑆 = {𝑋Î𝑅𝑛|𝐺(𝑌) ≤ 0, 𝑌𝑚𝑖𝑛 ≤ 𝑌 ≤ 𝑌𝑚𝑎𝑥} ≠ ∅. 

Соотношения (1c)-(4c) образуют математическую модель материала. Требуется найти, 

используя модель (3.1c)-(3.4c), такой вектор параметров 𝑌𝑜 ∈ 𝑺 , при котором каждая 

характеристика (компонента) вектор – функции: 𝐻1(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ }  принимает  

максимально возможное значение, а вектор - функции 𝐻2(𝑌) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }  

принимает  минимальное значение. В совокупности математическую модель материала (1c)-

(4c) можно трактовать как системный подход к исследованию структуры материала. 

1.3.3. Математическая модель структуры материала в условиях определенности и 

неопределенности в совокупности 

Математическая модель структуры материала (1c)-(4c) выполнена в условиях 

определенности. В реальной жизни условия определенности и неопределенности 

совмещаются. Модель структуры материала так же должна отражать эти условия. Используя 

обозначения математической модели, преобразуем моделью (1b)-(4b) с учетом условий 

неопределенности, в итоге получим:  

«Модель структуры материала в условиях определенности и неопределенности»: 

𝑂𝑝𝑡 𝐹(𝑋)  =  {𝑚𝑎𝑥 𝐻1(𝑋) = {𝑚𝑎𝑥 ℎ𝑘 (𝑋), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                  (5c) 

    𝑚𝑎𝑥 𝐼1(𝑋) ≡ {𝑚𝑎𝑥 𝑦𝑘 (𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},      (6c)  

       𝑚𝑖𝑛 𝐻2(𝑋) = {𝑚𝑖𝑛 ℎ𝑘 (𝑋), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

,                    (7c)  

𝑚𝑖𝑛 𝐼2(𝑋) ≡ {𝑚𝑖𝑛 𝑦𝑘 (𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},       (8c)  

при ограничениях: 𝐺(𝑌) ≤ 0, ℎ𝑘
𝑚𝑖𝑛  ≤  ℎ𝑘(𝑋) ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                (9c) 

   ∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100%, 𝑦𝑣

𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣
𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,         (10c) 

где 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}  – это вектор управляемых переменных (параметров) структуры 

материала; 𝐹(𝑋) = {𝐹1(𝑋) 𝐹2(𝑋) 𝐼1(𝑋) 𝐼2(𝑋)} – это векторный  критерий, каждая компонента 

которого является вектором критериев (характеристик) структуры материала (5c)-(8c), 

которые функционально зависят от дискретных значений вектора переменных 𝑋, где в (5c) и 

(7c) 𝐾1
𝑑𝑒𝑓

, 𝐾2
𝑑𝑒𝑓

 (definiteness); 𝐾1
𝑢𝑛𝑐 , 𝐾2

𝑢𝑛𝑐  (uncertainty), в (6c) и (8c) множество критериев 

max и min сформированные в условиях определенности и определенности. 

1.4. Виды задач, возникающих в процессе моделирования, проектирования и 

принятия оптимального решения - выбора параметров сложных инженерных систем  

Задачи, которые возникают в процессе моделирования, проектирования и принятия 

оптимального решения - выбора оптимальных параметров в сложных инженерных системах 

на базе векторной оптимизации включает последовательно три вида. 

1 вид. Решение векторной задачи математического программирования при 

равнозначных критериях. Полученный результат является основой для дальнейшего 

исследования системы. При этом используется метод решения векторной задачи при 

равнозначных критериях. Если полученный результат удовлетворяет лицу, принимающего 

решения, (ЛПР - проектировщик), то он берется за основу. Если не удовлетворяет, то 

переходим ко второму виду (прямая задача) или третьему виду решения векторных задач 

(Обратная задача).  
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2 вид. Решение прямой задачи векторной оптимизации, которая состоит в следующем: 

«Какие будут показатели (характеристики), если изменить параметры сложных технических 

систем». - Используется метод решения векторной задачи при равнозначных критериях. 

3 вид. Решение обратной задач векторной оптимизации, которая состоит в следующем: 

«Какие будут параметры сложных технических систем при заданных характеристиках». - 

Используется метод решения векторной задачи при заданном приоритете критерия. 

2. Многомерная математика. Теория, Методы.  

Математические модели в условиях определенности и неопределенности: технической 

системы (1a)-(4a), (5a)-(10a), технологического процесса (1b)-(4b), (5b)-(10b), структуры 

материала (1c)-(4c), (5c)-(10c) представлены векторными задачами математического 

программирования (ВЗМП). Дальнейшее развитие исследования работ по теории векторной 

оптимизации привела к формированию "Многомерной математики". В этом аспекте мы 

представим четыре раздела:  

Векторная задача математического программирования; 

Аксиоматика, принцип оптимальности и конструктивные методы векторной 

оптимизации с равнозначными критериями; 

Аксиоматика, принцип оптимальности и конструктивные методы векторной 

оптимизации с заданным приоритетом критерия; 

Прикладная многомерная математика: Векторная задача нелинейного 

программирования – модель развития инженерных систем.    

2.1. Векторная задача математического программирования.  

2.1.1. Введение в многомерную математику. 

В качестве представителя многомерной математики мы сформулируем задачу 

математического программирования, представленную множеством функций, которые 

определяют многомерность исследуемого объекта. Каждая функция этого множества функций 

имеют различную целевую направленность: максимизации или минимизации, которые в 

совокупности изменяются на определенном (не пустом и замкнутом) множестве переменных 

(параметров). Не нарушая общности множество функций можно представить в виде вектора 

функций. В итоге получаем векторную задачу математического программирования (ВЗМП). 

На базе векторной задачи оптимизации представим теоретические проблемы необходимые для 

ее решения, которые включают аксиоматику (теоретические основы), принцип оптимальности 

и конструктивные методы решения векторных задач с равнозначными критериями и заданным 

приоритетом критерия, [6, 15, 29, 31, 33]. 

2.1.2. Векторная задача математического программирования 

Векторная задача математического программирования (ВЗМП) – это стандартная задача 

математического программирования, имеющая некоторое множество критериев, которые в 

совокупности представляют вектор критериев. 

ВЗМП подразделяются на однородные и неоднородные ВЗМП. 

Однородные ВЗМП максимизации – это векторная задача, у которой каждая компонента 

множества критериев направлена на максимизацию. 

Однородные ВЗМП минимизации – это векторная задача, у которой каждая компонента 

множества критериев направлена на минимизацию. 

Неоднородные ВЗМП – это векторная задача, у которой множество критериев разделено 

на два подмножества (вектора) критериев – максимизации и минимизации соответственно, т. 

е. неоднородные ВЗМП – это объединение двух видов однородных задач.  
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В соответствии с этими определениями представим выпуклую векторную задачу 

математического программирования с неоднородными критериями [6, 20, 22]. 

𝑂𝑝𝑡 𝐹(𝑋) = {max 𝐹1(𝑋) = {max 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ },                    (1) 

   min 𝐹2(𝑋) = {min 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }},                   (2) 

 𝑓𝑘
𝑚𝑖𝑛 𝑓𝑘(𝑋) 𝑓𝑘

𝑚𝑎𝑥, 𝐺(𝑋)  𝐵,                                       (3) 

                   𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥,                                       (4) 

где 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}  - вектор переменных, т.е. это вектор из N-мерного евклидова RN, 

 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 - параметрические ограничения; 

𝐹(𝑋) - вектор-функция (векторный критерий), имеющая К – компонент-функций, (К - 

мощность множества К), 𝐹(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}. Множество К состоит из подмножества K1 

компонент максимизации и подмножества K2 минимизации; К=K1K2, для оценки 

совокупности критериев вводится обозначение операция «opt», которое включает max и min;  

𝐹1(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅ }  – это векторный критерий, каждая компонента которого 

максимизируется, K1 – число критериев, а 𝐾11, 𝐾1
̅̅ ̅̅ ̅̅ - множество критериев максимизации 

(задача (1), (3), (4) представляют собой ВЗМП с однородными критериями максимизации). В 

дальнейшем будем предполагать, что 𝑓𝑘(𝑋), 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅  - непрерывные вогнутые функции 

(иногда будем их называть критериями максимизации); 

𝐹2(𝑋) = {𝑓𝑘(𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ }  - векторный критерий, каждая компонента которого 

минимизируется, 𝐾2𝐾1 + 1, 𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 1, 𝐾2
̅̅ ̅̅ ̅̅   - множество критериев минимизации, K2 – число, 

(задача (2) -(4) это ВЗМП с однородными критериями минимизации). Предполагаем, что 

𝑓𝑘(𝑋), 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅ - непрерывные выпуклые функции: 

  K1 K2 = K, K1  K, K2  K.                                  (5) 

𝑓𝑘
𝑚𝑖𝑛, 𝑓𝑘

𝑚𝑎𝑥 – минимальная и максимальная величина k-го критерия в ограничениях, 

𝐺(𝑋) 𝐵, 𝑋  0   - стандартные ограничения, 𝑔𝑖(𝑋) 𝑏𝑖 , 𝑖 = 1, . . . , 𝑀  , где bi - набор 

вещественных чисел, а функции 𝑔𝑖(𝑋) предполагаются непрерывными и выпуклыми.  

Обозначим: 𝑺 = {𝑋Î𝑹𝑛|𝐺(𝑋) ≤ 0, 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥} ≠ ∅  -             (6) 

это допустимое множество точек (или более кратко - допустимое множество), 

задающиеся стандартными ограничениями (3)-(4) и тривиальными ограничениями X 0. 

Предполагаем, что допустимое множество точек не пусто и представляет собой компакт.  

Векторная функция (критерий) минимизации 𝐹2(𝑋) может быть преобразован в 

векторную функцию (критерий) максимизации умножением каждой компоненты 𝐹2(𝑋) на 

минус единицу. Векторный критерий 𝐹2(𝑋) введен в ВЗМП (1)-(4) для того, чтобы показать, 

что в задаче имеется два подмножества критериев 𝑲𝟏 , 𝑲𝟐  с принципиально различными 

направлениями оптимизации. Предполагаем, что точки оптимума, полученные по каждому 

критерию, не совпадают хотя бы для двух критериев. Если все точки оптимума совпадают 

между собой для всех критериев, то считаем решение тривиально.  

2.1.3.  Аксиомы и Аксиоматические методы 

Аксиома — это утверждение, не требующее логического доказательства. На основе этих 

утверждений (исходных положений) строится та или иная теория.  

Аксиоматический метод — это способ построения научной теории, при котором в основу 

теории кладутся некоторые исходные положения, называемые Аксиомами теории. В итоге все 

остальные положения теории получаются как логические следствия аксиом, [1, 2]. 

В математике Аксиоматический метод зародился в работах древнегреческих геометров. 

Образцом аксиоматического метода является древнегреческий ученый Евклид, аксиомы 

которого были заложены в его знаменитом сочинении «Начала». Дальнейшее развитие 


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аксиоматического метода получил в работах Д. Гильберта в виде метода формализма системы. 

Общая схема построения произвольной формальной системы («S») включает: 

1. Язык системы («S»), в том числе алфавит – это перечень элементарных символов; 

правила образования (синтаксис), по которым строится формулы «S». 

2. Аксиомы системы «S», которые представляют некоторое множество формул. 

3. Правила вывода системы «S» [2]. 

В приложении к решению задачи векторной оптимизации (многомерной математики) 

аксиоматика подразделяется на два раздела: 

1. Аксиоматика решения задачи векторной оптимизации с равнозначными критериями;  

2. Аксиоматика решения задачи векторной оптимизации с заданным приоритетом 

критериев.  

Только при построении первоначальной аксиоматики возможно в дальнейшем 

построение принципа оптимальности и вытекающих из него алгоритмов решения векторных 

задач математического программирования.  

2.2. Аксиоматика, принцип оптимальности и конструктивные методы векторной 

оптимизации с равнозначными критериями 

2.2.1. Аксиоматика решения векторной задачи оптимизации с равнозначными 

критериями 

В соответствии с вышеизложенной трактовкой Язык системы многомерной математики 

включает: во-первых, нормализацию критериев, во-вторых, относительную оценку критериев 

(функций), и, в-третьих, минимальный относительный уровень. 

Определение 1. (Нормализация критерия). 

Нормализация критериев (математическая операция: сдвиг плюс нормирование) 

представляет однозначное отображение функции 𝑓𝑘(𝑋) ∀𝑘 ∈ 𝐾, в одномерное пространство 

R1 (сама функция 𝑓𝑘(𝑋) ∀𝑘 ∈ 𝐾 представляет собой функцию преобразования из N-мерного 

евклидова пространства 𝑹𝑵 в 𝑹𝟏). Для нормализации критериев в векторных задачах будут 

использоваться линейные преобразования:  𝑓𝑘(𝑋) =  𝑎𝑘𝑓𝑘
′(𝑋) + 𝑐𝑘∀𝑘 ∈ 𝐾 , или  

𝑓𝑘(𝑋) =  (𝑓𝑘
′(𝑋) + 𝑐𝑘)/𝑎𝑘∀𝑘 ∈ 𝐾,                               (7) 

где 𝑓𝑘
′(𝑋) , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  - старое (до нормализации) значение критерия; 𝑓𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  - 

нормализованное значение,  𝑎𝑘, 𝑐𝑘- постоянные.  

Нормализация критериев 𝑓𝑘(𝑋) =  (𝑓𝑘
′(𝑋) + 𝑐𝑘)/𝑎𝑘𝑘ÎК  представляет простое 

(линейное) инвариантное преобразование полинома, в результате которого структура 

полинома остается неизменной. В оптимизационной задаче нормализация критериев 𝑓𝑘(𝑋) =

 (𝑓𝑘
′(𝑋) + 𝑐𝑘)/𝑎𝑘𝑘ÎК  не влияет на результат решения. Действительно, если решается 

выпуклая оптимизационная задача:  

𝒎𝒂𝒙𝑿⋴𝑺 𝑓(𝑋), то в точке оптимума 𝑋∗Î 𝑆: 
𝑑𝑓(𝑋∗)

d𝑋
= 0.                (8) 

В общем случае (в том числе с нормализацией критерия (1)) решается задача: 

𝒎𝒂𝒙𝑿⋴𝑺 (𝑎𝑘𝑓𝑘
′(𝑋) + 𝑐𝑘),                                    (9) 

то в точке оптимума 𝑋∗Î 𝑆:         
𝑑(𝑎𝑘𝑓(𝑋∗)+𝑐𝑘)

d𝑋
= 𝑎𝑘

𝑑(𝑓(𝑋∗))

d𝑋
+

𝑑(𝑐𝑘)

d𝑋
= 0.              (10) 

Результат идентичен, т.е. точка оптимума 𝑋𝑘
∗, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅  является одной и той же для 

ненормализованных и нормализованных задач. 

Определение 2. (Относительная оценка функции (критерия). 

В векторной задаче (1)-(4) выполним нормализацию (7) вида: 
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𝜆𝑘(𝑋) =
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 ,𝑘 Î 𝑲                                       (11) 

это относительная оценка k-го критерия в точке 𝑋 ∈ 𝑺, где  𝑓𝑘
∗  наилучшая величина k-го 

критерия, полученная при решении ВЗМП (1)-(4) отдельно по k-му критерию;  

𝑓𝑘
0- наихудшая величина k-го критерия (антиоптимум) в точке 𝑋𝑘

0 (верхний индекс 0 - 

ноль) на допустимом множестве S;  

в задаче на max (1), (3), (4) величина 𝑓𝑘
0 является наименьшим значением k-го критерия: 

𝑓𝑘
0 = 𝑚𝑖𝑛𝑋⋴𝑆𝑓𝑘(𝑋) ∀𝑘 ∈ 𝐾1,  

а в задаче на min (2), (3), (4) величина 𝑓𝑘
0 является наибольшим значением k-го критерия: 

𝑓𝑘
0 = 𝑚𝑎𝑥𝑋⋴𝑆𝑓𝑘(𝑋) ∀𝑘 ∈ 𝐾2. 

Относительная оценка 𝜆𝑘(𝑋) ∀𝑘 ∈ 𝐾, во-первых, измеряется в относительных единицах; 

во-вторых, относительная оценка 𝜆𝑘(𝑋) ∀𝑘 ∈ 𝐾: на допустимом множестве меняется с нуля в 

точке 𝑋𝑘
0 : ∀𝑘 ∈ 𝑲 𝑙𝑖𝑚

𝑋→𝑋𝑘
0

𝜆𝑘(𝑋) 𝜆𝑘(𝑋) = 0, к единице в точке оптимума 𝑋𝑘
∗:  

∀𝑘 ∈ 𝑲 𝑙𝑖𝑚
𝑋→𝑋𝑘

∗
𝜆𝑘(𝑋) = 1: ∀𝑘 ∈ 𝑲 0 ≤ 𝜆𝑘(𝑋) ≤ 1, X ∈ 𝑺,                     (12) 

В результате такой нормализации все критерии ВЗМП (1)-(4) соизмеримы в 

относительных единицах, что позволяет, сравнивать их друг с другом при совместной 

оптимизации.  

Определение 3. Операция сравнения относительных оценок критерия между собой. 

Так как, любая функция (критерий) представлен в относительных оценках функций 

𝜆𝑘(𝑋) ∀𝑘 ∈ 𝐾, которые лежат пределах (2.8), то возможно сравнение относительных оценок 

по числовой величине. Для сравнения используется операция «вычитания». Если сравнивается 

две функции (критерия), измеренные в относительных оценках 𝜆𝑘=1(𝑋) и 𝜆𝑘=2(𝑋) ∀𝑘 ∈ 𝐾, то 

возможны три ситуации: 

первая, когда 𝜆𝑘=1(𝑋) > 𝜆𝑘=2(𝑋); 

вторая, когда 𝜆𝑘=1(𝑋) = 𝜆𝑘=2(𝑋); 

третья, когда 𝜆𝑘=1(𝑋) < 𝜆𝑘=2(𝑋). 

Первая и третья ситуация исследуется в разделе 2.3. В разделе 2 исследуется вторая 

ситуация. 

2.2.2. Аксиоматика векторной оптимизации с равнозначными критериями 

Аксиома 1. (О равнозначности критериев в допустимой точке векторной задачи 

математического программирования) 

В векторной задаче два критерия с индексами 𝑘 ∈ 𝑲, 𝑞 ∈ 𝑲  будем считать 

равнозначными в точке 𝑋 ∈ 𝑺, если относительные оценки по k-му и q-му критерию равны 

между собой в этой точке, т. е.  𝜆𝑘(𝑋) = 𝜆𝑞(𝑋), 𝑘, 𝑞 ∈ 𝑲. 

Пояснение. Если в точке 𝑋 ∈ 𝑺 функции (критерии) будут равны: 

 𝜆𝑙(𝑋) = 0,45 𝑙 ∈ 𝑲 и 𝜆𝑞(𝑋) = 0,45, 𝑞 ∈ 𝑲 (т.е. 45% от своей оптимальной величины, 

которая в относительных единицах равна 1), то такие критерии не «равны» друг другу, а 

равнозначны по своему числовому значению. И каждый из них несет свой функциональный 

смысл, который может быть получен, используя нормализацию критериев (11). 

Определение 4. (Определение минимального уровня среди всех относительных оценок 

критериев). Относительный уровень  в векторной задаче представляет нижнюю оценку 

точки XÎS среди всех относительных оценок 𝜆𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅: 
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∀𝑋 ∈ 𝑺 𝜆 ≤ 𝜆𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                                      (13) 

нижний уровень для выполнения условия (13) в точке XÎS определяется формулой 

𝑋Î𝑆  =  𝒎𝒊𝒏𝑘⋴𝐾𝜆𝑘(𝑋).                                           (14) 

Соотношения (13) и (14) являются взаимосвязанными. Они служат переходом от 

операции (14) определения min к ограничениям (13) и наоборот. Уровень  позволяет 

объединить все критерии в векторной задаче одной числовой характеристикой  и 

производить над ней определенные операции, тем самым, выполняя эти операции над всеми 

критериями, измеренными в относительных единицах. Уровень  функционально зависит от 

переменной X ∈ 𝑺, изменяя X, можем изменять нижний уровень - .  

2.2.3. Принцип оптимальности векторной оптимизации с равнозначными 

критериями 

Определение 5. (Принцип оптимальности 1 c равнозначными критериями). 

Векторная задача математического программирования при равнозначных критериях 

решена, если найдена точка 𝑋𝑜 ∈ 𝑺 и максимальный уровень o (верхний индекс o - оптимум) 

среди всех относительных оценок такой, что  


𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲𝜆𝑘(𝑋)                                       (15) 

Используя взаимосвязь выражений (13) и (14), преобразуем максиминную задачу (15) в 

экстремальную задачу: 


𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺λ                                              (16)  

при ограничениях 𝜆 ≤ 𝜆𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅.                             (17) 

Полученную задачу (16)-(17) назовем -задачей. -задача (16)-(17) имеет (N+1) 

размерность, как следствие результат решения -задачи (16)-(17) представляет собой 

оптимальный вектор 𝑋𝑜Î𝑅𝑁+1,  (N+1)-я компонента которого суть величина o, т. е. 𝑿𝒐 =

{𝑥1
𝑜 ,  𝑥2

𝑜, … , 𝑥𝑁
𝑜 , 𝑥𝑁+1

𝑜 }, при этом  𝑥𝑁+1
𝑜 = 

𝑜
, (N+1) компонента вектора Xo выделена в  

𝑜
.  

Полученная пара {𝑜, 𝑋𝑜} = 𝑿𝒐 характеризует оптимальное решение -задачи (16)-(17) 

и соответственно векторной задачи математического программирования (1)-(4) с 

равнозначными критериями, решенную на основе нормализации критериев и принципе 

гарантированного результата. Назовем в оптимальном решении 𝑿𝒐 = {𝑜, 𝑋𝑜} , Xo - 

оптимальной точкой, а o - максимальным уровнем.  

Важным результатом алгоритма решения векторной задачи с равнозначными 

критериями (1)-(4) является следующая теорема. 

Теорема 1. (Теорема о двух наиболее противоречивых критериях в векторной задаче 

математического программирования с равнозначными критериями). 

В выпуклой векторной задаче математического программирования (1)-(4) при 

эквивалентных критериях, решенной на основе нормализации критериев и принципа 

гарантированного результата, в оптимальной точке 𝑿𝒐 = {𝑜, 𝑋𝑜}   всегда имеется два 

критерия - обозначим их индексами 𝑞Î𝑲, 𝑝Î𝑲 (которые являются самыми противоречивыми 

из множества критериев 𝑘 = 1, 𝐾̅̅ ̅̅ ̅), и для которых выполняется равенство: 

λ𝑜 = λ𝑞(𝑋𝑜) = λ𝑝(𝑋𝑜), 𝑞, 𝑝 ∈ 𝑲, 𝑋 Î 𝑺,                               (18) 

и другие критерии определяются неравенством: 

λ𝑜 ≤ λ𝑘(𝑋𝑜), ∀𝑘 ∈ 𝑲, 𝑞 ≠ 𝑝 ≠ 𝑘.                                   (19) 

Впервые доказательство теоремы 1 представлено в [6, стр.22], в дальнейшем повторено 

в работе [10, стр.234]. Вместе с тем, что точка 𝑋𝑜 является оптимальным решением ВЗМП. 

2.2.4. Математический алгоритм решения задачи векторной оптимизации с 

равнозначными критериями 
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Для решения векторной задачи математического программирования (1)-(4) разработан 

метод, основанный на нормализации критериев (7), аксиоматике и принципе максимина 

(гарантированного результата) (11). Конструктивный метод решения векторной задачи 

оптимизации с равнозначными критериями включает два блока: 1-й блок «Системный анализ» 

- разделен на три шага; 2-й блок «Принятие оптимального решения», включающий два шага: 

построения -задачи и ее решения. 

Блок 1. Системный анализ.  

Шаг 1. Решается задача (1)-(4) по каждому критерию отдельно, т.е. для ∀𝑘 ∈ 𝑲1 

решается на максимум, а для ∀𝑘 ∈ 𝑲2 решается на минимум. 

В результате получим: 

𝑋𝑘
∗- точка оптимума по соответствующему критерию, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; 

𝑓𝑘
∗ = 𝑓𝑘(𝑋𝑘

∗) – величина k-го критерия в этой точке, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Шаг 2. Определяем наихудшую величину каждого критерия (антиоптимум): 𝑓𝑘
0, 𝑘 =

1, 𝐾̅̅ ̅̅ ̅. Для чего решается задача (1)-(4) для каждого критерия 𝑘 = 1, 𝑲1
̅̅ ̅̅ ̅̅ ̅ на минимум: 

𝑓𝑘
0 = 𝑚𝑖𝑛 𝑓𝑘(𝑋), 𝐺(𝑋)  𝐵, 𝑋  0, 𝑘 = 1, 𝑲1

̅̅ ̅̅ ̅̅ ̅  

для каждого критерия 𝑘 = 1, 𝑲2
̅̅ ̅̅ ̅̅ ̅  на максимум:  

𝑓𝑘
0 = 𝑚𝑎𝑥 𝑓𝑘(𝑋), 𝐺(𝑋)  𝐵, 𝑋  0, 𝑘 = 1, 𝑲2

̅̅ ̅̅ ̅̅ ̅.                          (20) 

В результате решения получим: 𝑋𝑘
0 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} - точка оптимума по 

соответствующему критерию, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; 𝑓𝑘
0 = 𝑓𝑘(𝑋𝑘

0) – величина k-го критерия в точке, 

𝑋𝑘
0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Шаг 3. Выполняется системный анализ множества точек, оптимальных по Парето. В 

точках 𝑋∗ = {𝑋𝑘
∗, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}  определяются величины целевых функций F(X*), относительных 

оценок (X*): λ𝑘(𝑋) =
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 ,𝑘Î𝑲.  

 𝐹(𝑋∗) = {𝑓𝑘(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} = |

𝑓1(𝑋1
∗), … , 𝑓𝐾(𝑋1

∗)
…

𝑓1(𝑋𝐾
∗ ), … , 𝑓𝐾(𝑋𝐾

∗ )
|,                   (21) 

(𝑋∗) = {𝜆𝑞(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} = |

𝜆1(𝑋1
∗), … , 𝜆𝐾(𝑋1

∗)
…

𝜆1(𝑋𝐾
∗ ), … , 𝜆𝐾(𝑋𝐾

∗ )
|.                   (22) 

В целом по задаче относительная оценка (22) λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ лежит в пределах: 

 0 ≤ λ𝑘(𝑋) ≤ 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Блок 2. Принятие оптимального решения в ВЗМП. Включает два шага – 4, 5. 

Шаг 4. Построение -задачи. Создание -задачи осуществляется в два этапа: 

первоначально строится максиминная задача оптимизации с эквивалентными критериями, 

которые на втором этапе преобразуются в стандартную задачу математического 

программирования, названной -задачей. Для построения максиминная задача используем 

определение 2: 

𝑋Î𝑺    = 𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑋). 

Нижний уровень  максимизируем по XÎS. В результате сформулируем максиминную 

задачу оптимизации с нормализованными критериями: 

λ𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑋).                               (23) 

 На втором этапе задача (23) преобразуется в стандартную задачу математического 

программирования, названную -задача:  
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λ𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺 ,                           𝜆𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺 ,         (24)   

 − λ𝑘(𝑋) ≤ 0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,       →        −  
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0  0, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,    (25) 

𝐺(𝑋)  𝐵, 𝑋  0,                        𝐺(𝑋)  𝐵, 𝑋  0,            (26) 

где вектор неизвестных X имеет размерность 𝑁 + 1: 𝑋 = {, 𝑥1, … , 𝑥𝑁}. 

Шаг 5. Решение -задачи. -задача (24)-(26) – стандартная задача выпуклого 

программирования и для ее решения используются стандартные методы, в результате решения 

-задачи получим:          

 𝑿𝒐 = {𝑜, 𝑋𝑜} - точку оптимума;                                   (27) 

𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅- величины критериев в этой точке;                 (28)  

𝑘(𝑋𝑜) =
𝑓𝑘(𝑋𝑜)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 =  1, 𝐾̅̅ ̅̅ ̅- величины относительных оценок;        (29) 

o - максимальная относительная оценка, которая является максимальным нижним 

уровнем для всех относительных оценок 𝑘(𝑋𝑜) , гарантированным результатом в 

относительных единицах. o гарантирует, что в точке Xo относительные оценки 𝑘(𝑋𝑜) 

больше или равны o: 

𝑘(𝑋𝑜)  𝑜, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ or 
𝒐  𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑋𝑜 Î 𝑺,               (30) 

и в соответствии с теоремой 1 точка оптимума 𝑋𝑜 = {𝒐, 𝑥1, … , 𝑥𝑁}  является 

оптимальной по Парето. 

2.3. Аксиоматика и принцип оптимальности векторной оптимизации с заданным 

приоритетом критерия 

В определении 3 указано, что если сравнивать две функции (критерия), измеренных в 

относительных оценках 𝜆𝑘=1(𝑋)  и 𝜆𝑘=2(𝑋) ∀𝑘 ∈ 𝐾 , то возможны три ситуации. Вторая 

ситуация, когда 𝜆𝑘=1(𝑋)  = 𝜆𝑘=2(𝑋)  исследована в разделе 2.2 (равнозначные критерии). 

Ситуации: первая, когда 𝜆𝑘=1(𝑋) > 𝜆𝑘=2(𝑋), и третья, когда 𝜆𝑘=1(𝑋) < 𝜆𝑘=2(𝑋), исследуются 

в этом разделе. Такие ситуации определяются, как задачи с приоритетом критерия. 

Для построения методов решения проблемы векторной оптимизации с приоритетом 

критерия мы введем следующие определения: О приоритете одного критерия над другим; О 

числовом выражении приоритета критерия над другим; О заданном числовом выражении 

приоритета одного критерия над другим; О нижнем уровне среди всех относительных оценок 

с приоритетом критерия; О подмножестве точек, приоритетных по критерию; Принцип 

оптимальности 2 - Решение векторной задачи с заданным приоритетом критерия, [20, 22].  

2.3.1. Аксиоматика решения векторной задачи оптимизации с заданным приоритетом 

критерия 

Язык системы аксиоматики решения векторной задачи с заданным приоритетом 

критерия включает определения: 1) Приоритет одного критерия над другим; 2) Числовое 

значение приоритета критерия; 3) Нижний уровень критерия среди всех относительных 

оценок с приоритетом критерия. 

Определение 6. (О приоритете одного критерия над другим). 

Критерий 𝑞 ∈ 𝑲 в векторной задаче в точке  𝑋 Î 𝑺 имеет приоритет над другими 

критериями 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, если относительная оценка λ𝑞(𝑋) по этому критерию больше или равна 

относительных оценок k(X) других критериев, т. е.: 

λ𝑞(𝑋) ≥ λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                                           (31) 

и строгий приоритет, если хотя бы для одного критерия 𝑡 ∈ 𝑲: λ𝑞(𝑋) > λ𝑘(𝑋), 𝑡 ≠ 𝑞, а для 

остальных критериев λ𝑞(𝑋) ≥ λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘 ≠ 𝑡 ≠ 𝑞. 
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Введением определения приоритета критерия qÎK в ВЗМП (1)-(4) выполнено 

переопределение раннего понятия приоритета. Если раньше в него вкладывалось интуитивное 

понятие о важности этого критерия, то сейчас эта “важность” определяется математически: 

чем больше относительная оценка q-го критерия над другими, тем он важнее (приоритетнее), 

и наиболее высокий приоритет в точке оптимума 𝑋𝑘
∗, ∀𝑞 ∈ 𝑲 . 

Из определения выражения приоритета критерия 𝑞 ∈ 𝑲  в векторной задаче в 

уравнениях (1)-(4) следует, что возможная область соответствующая множеству точек 𝑺𝑞 𝑺 , 

которое  характеризуется как λ𝑞(𝑋) ≥ λ𝑘(𝑋),𝑘  𝑞,𝑋 Î 𝑺𝑞 . Однако, вопрос на сколько  

критерий 𝑞 ∈ 𝑲  в точке множества 𝑺𝑞  имеет больший приоритет относительно другого 

критерия остается открытым. Для ответа на этот вопрос, мы вводим коэффициент связи между 

парой относительных оценок q и k, что, в целом, представляет вектор:  

𝑃𝑞(𝑋) = {𝑝𝑘
𝑞

(𝑋)  𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑞 Î 𝑲 𝑋 Î 𝑺𝑞. 

Определение 7. (О числовом выражении приоритета критерия над другим). 

В векторной задаче с приоритетом критерия q-го над другими критериями 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, для 

𝑋 Î 𝑺𝑞 , вектор 𝑃𝑞(𝑋)  показывает во сколько раз относительная оценка λ𝑞(𝑋), 𝑞 ∈ 𝑲 , 

больше остальных относительных оценок λ𝑘(𝑋), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅:  

𝑃𝑞(𝑋) = {𝑝𝑘
𝑞(𝑋) =

λ𝑞(𝑋)

λ𝑘(𝑋)
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑝𝑘

𝑞(𝑋) 1,𝑋 Î 𝑺𝑞 𝑆, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,𝑞 Î 𝑲.    (32) 

Такое отношение 𝑝𝑘
𝑞(𝑋) =

λ𝑞(𝑋)

λ𝑘(𝑋)
 назовем числовым выражением приоритета q-го 

критерия над остальными критериями 𝑘 = 1, 𝐾̅̅ ̅̅ ̅.                            

Определение 7a. (О заданном числовом выражении приоритета одного критерия над 

другими). В векторной задаче (1)-(4) с приоритетом критерия 𝑞 ∈ 𝑲 для ∀𝑋 ∈ 𝑺 вектор 𝑃𝑞 =

{𝑝𝑘
𝑞

, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, считается заданным лицом, принимающим решения, (ЛПР), если задана каждая 

компонента этого вектора. Заданная ЛПР компонента 𝑝𝑘
𝑞
, с точки зрения ЛПР, показывает во 

сколько раз относительная оценка λ𝑞(𝑋), 𝑞 ∈ 𝑲  больше остальных относительных оценок 

λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. Вектор 𝑝𝑘
𝑞

, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ является заданным числовым выражением приоритета q-

го критерия над остальными критериями 𝑘 = 1, 𝐾̅̅ ̅̅ ̅: 

𝑃𝑞(𝑋) = {𝑝𝑘
𝑞(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, 𝑝𝑘

𝑞(𝑋) 1,𝑋 Î 𝑺𝑞 𝑆, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,𝑞 Î 𝑲.     (33) 

Векторная задача (1)–(4), в которой задан приоритет какого-либо из критериев, называют 

векторной задачей с заданным приоритетом критерия. Проблема задачи вектора приоритетов 

возникает тогда, когда необходимо определить точку 𝑋𝑜 ∈ 𝑺  по заданному вектору 

приоритетов. 

При операции сравнения относительных оценок с приоритетом критерия qÎK, 

аналогично, как и в задаче с эквивалентными критериями, введем дополнительную числовую 

характеристику , которую назовем уровнем. 

Определение 8. О нижнем уровне среди всех относительных оценок с приоритетом 

критерия.  

Уровень  является нижним среди всех относительных оценок с приоритетом критерия 

𝑞 ∈ 𝑲, таким, что 

  𝑝𝑘
𝑞
λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑞 ∈ 𝑲, ∀𝑋 ∈ 𝑺𝑞 𝑆;                           (34) 

нижний уровень для выполнения условия (54) определяется 

 = 𝑚𝑖𝑛𝑘⋴𝐾𝑝𝑘
𝑞
λ𝑘(𝑋), 𝑞 ∈ 𝑲,𝑋 Î 𝑺𝑞  𝑆.                             (35) 
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Соотношения (34) и (35) являются взаимосвязанными и служат в дальнейшем переходом 

от операции определения min к ограничениям и наоборот. В разделе 4 мы дали определение 

точки 𝑋𝑜 ∈ 𝑺, оптимальной по Парето, с эквивалентными критериями. Рассматривая данное 

определение как исходное, мы построим ряд аксиом деления допустимого множества точек S, 

во-первых, как подмножество точек, оптимальных по Парето Sо, и, во-вторых, на 

подмножество точек 𝑺𝑞 𝑺, 𝑞 Î 𝑲, приоритетным на q -му критерию. 

2.3.2. Аксиома векторной оптимизации с приоритетными критериями 

Аксиома 2. (О подмножестве точек, приоритетных по критерию). 

В векторной задаче (1)-(4) подмножество точек SqS называется областью приоритета 

критерия qÎK над другими критериями, если  

∀𝑋 ∈ 𝑺𝑞 𝑘Î𝑲 λ𝑞(𝑋) λ𝑘(𝑋), 𝑞  𝑘. 

Это определение распространяется и на множество точек 𝑺𝑜, оптимальных по Парето, 

что дается следующим определением. 

Аксиома 2a. (О подмножестве точек, приоритетных по критерию, на множестве 

точек оптимальных по Парето). 

В векторной задаче (1)-(4) подмножество точек 𝑺𝒒
𝒐𝑺𝑜 S  называется областью 

приоритета критерия 𝑞 ∈ 𝑲  над другими критериями, если 

X Î 𝑆𝑞
𝑜 𝑘 Î 𝐾 λ𝑞(𝑋) λ𝑘(𝑋), 𝑞  𝑘. 

Дадим некоторые пояснения. 

Аксиома 2 и 2а позволила представить в векторной проблеме (1)–(4) допустимое 

множество точек S, включая подмножество точек, оптимальных по Парето, 𝑺𝑜 𝑺 , в 

подмножества: 

одно подмножество точек 𝑺′ 𝑺, где критерии эквивалентны, и подмножество точек S', 

пересекаясь с подмножеством точек So, выделяет подмножество точек, оптимальных по 

Парето, в подмножество с эквивалентными критериями 𝑺𝑜𝑜 = 𝑺′ ∩ 𝑺𝑜 , которое, как это 

показано далее, состоит из одной точки 𝑋𝑜 ∈ 𝑺, т.е. 𝑋𝑜 = 𝑺𝑜𝑜 = 𝑺′ ∩ 𝑺𝑜, 𝑺′Î𝑺, 𝑺𝑜𝑺; 

 «K» подмножеств точек, где у каждого критерия 𝑞 = 1, 𝐾̅̅ ̅̅ ̅  имеется приоритет над 

другими критериями 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑞  𝑘 . Таким образом, выполнено разделение, во-первых, 

множества всех допустимых точек S, на подмножества 𝑺𝑞 𝑺, 𝑞 = 1, 𝐾̅̅ ̅̅ ̅ ,  и, во-вторых, 

разделение подмножества точек, оптимальных по Парето, Sо, на подмножества 𝑺𝒒
𝒐𝑺𝑞 𝑺, 𝑞 =

1, 𝐾̅̅ ̅̅ ̅. Отсюда верны следующие соотношения: 

𝑺′U(⋃ 𝑺𝑞
𝑜

𝑞⋴𝐾 ) ≡  𝑺°, 𝑺𝒒
𝒐 𝑺°  𝑺, 𝑞 = 1, 𝐾̅̅ ̅̅ ̅. 

Мы заметим, что подмножество точек 𝑺𝒒
𝒐 , с одной стороны, включено в область 

(подмножество точек), имеющих приоритет критерия 𝑞 ∈ 𝑲  над другими критериями: 

𝑺𝒒
𝒐 𝑺𝑞  𝑺, и с другой стороны, на подмножество точек, оптимальны поз Парето: 𝑺𝒒

𝒐 𝑺°  𝑺. 

Аксиома 2 и числовое выражение приоритета критерия (Определение 5) позволяет 

определять каждую допустимую точку 𝑋 Î 𝑺 (посредством вектора:  

𝑃𝑞(𝑋) = {𝑝𝑘
𝑞(𝑋) =

λ𝑞(𝑋)

λ𝑘(𝑋)
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, формироваться и выбирать:  

подмножество точек по приоритетному критерию Sq, который включен в множество 

точек S, ∀𝑞 ∈ 𝑲 𝑋Î𝑺𝑞 𝑺, (такое подмножество точек может использоваться в проблемах 

кластеризации, но это вне статьи); 

подмножество точек по приоритетному критерию 𝑺𝑞
𝑜, который включен в ряд точек So, 

оптимальных по Парето, 𝑞Î𝐾, 𝑋Î𝑺𝒒
𝒐𝑺°. 
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Множество 

допустимых точек 

𝑋Î 𝑺        → 

Подмножества точек 

оптимума по Парето, 

𝑋Î 𝑺𝑜 𝑺 → 

Подмножество точек, 

оптимума по Pareto  

𝑋Î𝑺𝒒
𝒐 𝑺𝑜 𝑺    → 

Отдельная точка, 

𝑋Î𝑺  

𝑋Î𝑺𝒒
𝒐 𝑺𝑜 𝑺 

 

Это самый важный результат, который позволит вывести принцип оптимальности и 

построить методы выбора любой точки из множества точек, оптимальных по Парето. 

2.3.3. Принцип оптимальности решения векторной задачи с заданным 

приоритетом критерия 

Определение 8. (Принцип оптимальности 2. Решение векторной задачи с заданным 

приоритетом критерия). Векторная задача (1)–(4) с заданным приоритетом q-го критерия 

𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ считается решенной, если найдена точка Xo и максимальный уровень o 

среди всех относительных оценок такой, что 

λ𝑜 =  𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑞 Î 𝑲.                              (36) 

Используя взаимосвязь (34) и (35), преобразуем максиминную задачу (36) в задачу:  

λ𝑜  =  𝒎𝒂𝒙𝑿⋴𝑺 ,                                                 (37)  

at restriction    𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅.                                 (38) 

Задачу (37)-(38) назовем -задачей с приоритетом  q-го критерия. 

Результатом решения -задачи будет точка Xo={Xo, o} – она же является и результатом 

решения ВЗМП (1)-(4) с заданным приоритетом критерия, решенной на основе нормализации 

критериев и принципа гарантированного результата.  

В оптимальном решении 𝑿𝒐 = {𝑋𝑜,𝑜}, 𝑿𝒐 - оптимальная точка, а o - максимальный 

нижний уровень. Точка 𝑋𝑜  и уровень o соответствуют ограничениям (4), которые можно 

записать как: λ𝑜 𝑝𝑘
𝑞

λ𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Эти ограничения являются основой оценки правильности результатов решения в 

практических векторных задачах оптимизации. 

Определение 1 и 2 «Принципы оптимальности» дают возможность сформулировать 

понятие операции «opt». 

Определение 9. (Математическая операция «opt»). 

В векторной задаче (1)-(4), которая представлена критериями «max» и «min», 

математическая операция «opt» состоит в определении точки Xo и максимального нижнего 

уровня o , в котором все критерии измеряются в относительных единицах: 

°  λ𝑘(𝑋°) =  
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,                               (39) 

т.е. все критерии λ𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ равны или больше максимального уровня o, (поэтому o 

также называется гарантированным результатом). 

Теорема 2. (Теорема о наиболее противоречивых критериях в векторной задаче с 

заданным приоритетом). 

Если в выпуклой векторной задаче математического программирования максимизации 

(1)-(4) задан приоритет q-го критерия 𝑝𝑘
𝑞

, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,𝑞 Î 𝑲 над другими критериями, в точке 

оптимума 𝑋𝑜 ∈ 𝑺 , полученной на основе нормализации критериев и принципа 

гарантированного результата, всегда найдется два критерия с индексами 𝑟 Î 𝑲, 𝑡 Î 𝑲, для 

которых выполняется строгое равенство из: 

° = 𝑝𝑘
𝑟λ𝑟(𝑋°) = 𝑝𝑘

𝑡  λ𝑡(𝑋°), 𝑟, 𝑡,Î 𝑲,                               (40) 

и другие критерии определяются неравенствами: 

°  𝑝𝑘
𝑞

(𝑋°), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,𝑞 Î 𝑲, 𝑞  𝑟  𝑡 .                            (41) 
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Критерии с индексами 𝑟 Î 𝑲, 𝑡 Î 𝑲 , для которых выполняется равенство (41), 

называются наиболее противоречивыми. 

Доказательство. Аналогично теореме 2 [20]. Заметим, что в (40) и (41) индексы критериев 

𝑟 Î 𝑲, 𝑡 Î 𝑲 могут совпадать с индексом 𝑞 Î 𝑲. 

Следствие теоремы 1. О равенстве оптимального уровня и относительных оценок в 

векторной задаче с двумя критериями с приоритетом одного из них. 

В выпуклой векторной задаче математического программирования с двумя 

эквивалентными критериями, решаемой на основе нормализации критериев и принципа 

гарантированного результата, в оптимальной точке Xo всегда выполняется равенство: при 

приоритете первого критерия над второй: 

λ𝑜 = λ1(𝑋𝑜) = 𝑝2
1(𝑋°)λ2(𝑋𝑜), 𝑋𝑜 ∈ 𝑺 ,                              (42) 

где 𝑝2
1(𝑋°) = λ1(𝑋𝑜)/λ2(𝑋𝑜), при приоритете второго критерия над первым: 

λ𝑜 = λ2(𝑋𝑜) = 𝑝1
2(𝑋°)λ1(𝑋𝑜), 𝑋𝑜 ∈ 𝑺, где 𝑝1

2(𝑋°) = λ2(𝑋𝑜)/λ1(𝑋𝑜). 

2.3.4. Метод решения задачи векторной оптимизации с заданным приоритетом 

критерия 

Шаг 1. Решаем векторную задачу с равнозначными критериями.  

В результате решения получаем: оптимальные точки по каждому критерию отдельно 

𝑋𝑘
∗, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅  и размеры критериальных функций в этих точках 𝑓𝑘

∗ = 𝑓𝑘(𝑋𝑘
∗), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅ , 

которые представляют граница множества точек, оптимальных по Парето; 

точки антиоптимума по каждому критерию 𝑋𝑘
0 =  {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅ и наихудшей неизменной 

части каждого критерия 𝑓𝑘
0 = 𝑓𝑘(𝑋𝑘

0), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; 

𝑿𝒐 = {𝑋𝑜, 𝑜}  оптимальная точка, как результат решения VPMP с эквивалентными 

критериями, т.е. результат решения максиминной задачи, -задачи, построенной на ее основе; 

° - максимальная относительная оценка, и является максимальным нижним уровнем для 

всех относительных оценок λ𝑘(𝑋𝑜) , или гарантированный результат в относительных 

единицах, ° гарантирует, что все относительные оценки k(X°) равны или больше °: 

λ𝑜 ≤ λ𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑋° Î 𝑆                              (43) 

Лицо, принимающее решение, проводит анализ результатов решения векторной задачи 

с эквивалентными критериями. 

Если полученные результаты удовлетворяют лицо, принимающее решение, то конец, 

иначе выполняются последующие расчеты. 

Дополнительно вычислим: в каждой точке 𝑋𝑘
∗, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  определим величины всех 

критериев 𝑓𝑘
∗ = 𝑓𝑘(𝑋𝑘

∗), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ , которые представляют границу множества Парето, и 

относительных оценок: (𝑋∗)  =  {λ𝑞(𝑋𝑘
∗), 𝑞 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅},  λ𝑘(𝑋)  =

𝑓𝑘(𝑋)−𝑓𝑘
0

𝑓𝑘
∗−𝑓𝑘

0 ,𝑘 Î 𝑲: 

𝐹(𝑋∗) = |
𝑓1(𝑋1

∗) … 𝑓𝐾(𝑋1
∗)

…
𝑓1(𝑋𝐾

∗ ) … 𝑓𝐾(𝑋𝐾
∗ )

|,  (𝑋∗) = |
1(𝑋1

∗) … 𝐾(𝑋1
∗)

…
1(𝑋𝐾

∗ ) … 𝐾(𝑋𝐾
∗ )

|.             (44) 

Матрицы критериев F(X*) и относительных оценок (X*) показывают величины каждого 

критерия 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ при переходе от точки оптимума 𝑋𝑘
∗, 𝑘Î𝑲 к другой 𝑋𝑞

∗, 𝑞Î𝑲; 

в точке оптимума при равнозначных критериях Xo вычислим величины критериев и 

относительных оценок:   

      𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; λ𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                              (45) 
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которые удовлетворяют неравенству (43). В других точках XÎSo меньший из критериев в 

относительных единицах  =  𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑋)  всегда меньше o. Запоминаются данные -

задачи (24)-(26), которые являются основой для дальнейшего изучения множества Парето. 

Шаг 2. Выбор приоритетного критерия 𝑞 ∈ 𝑲. 

Из теории (см. теорему 1) известно, что в оптимальной точке Xo всегда имеется два 

наиболее противоречивых критерия 𝑞 ∈ 𝑲 и 𝑣 ∈ 𝑲, для которых в относительных единицах 

выполняется точное равенство: 

λ𝑜 = λ𝑞(𝑋𝑜) = λ𝑣(𝑋𝑜), 𝑞, 𝑣 ∈ 𝑲, 𝑋Î 𝑺, а для остальных выполняется неравенства:  

λ𝑜 ≤ λ𝑘(𝑋𝑜), ∀𝑘 ∈ 𝑲, 𝑞 ≠ 𝑣 ≠ 𝑘. 

Как правило, из этой пары выбирается критерий, который ЛПР хотел бы улучшить, такой 

критерий называется «приоритетным критерием», обозначим его 𝑞 ∈ 𝑲. 

Шаг 3. Определяются числовые пределы изменения величины приоритета критерия 𝑞 ∈

𝑲 . Для приоритетного критерия 𝑞 ∈ 𝑲  из матрицы (40) определим числовые пределы 

изменения величины критерия: в натуральных единицах fq(X) и в относительных единицах 

q(X), которые лежат в следующих пределах: 

𝑓𝑘(𝑋𝑜) 𝑓𝑞(𝑋)  𝑓𝑞(𝑋𝑞
∗), 𝑘Î𝑲                              (46) 

где 𝑓𝑞(𝑋𝑞
∗) выводится из матрицы уравнения F(X*) (44), все критерии показывают размеры, 

измеренные в физических единицах, 𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ из (45), и, в относительных единицах: 

𝑘(𝑋𝑜) 𝑞(𝑋)  𝑞(𝑋𝑞
∗), 𝑘Î𝑲,                                (47) 

где 𝜆𝑞(𝑋𝑞
∗) выводится из матрицы (𝑋∗), все критерии показывают размеры, измеренные в 

относительных единицах (отметим, что 𝜆𝑞(𝑋𝑞
∗) = 1), 𝜆𝑞(𝑋𝑜) из уравнения (64). 

Как правило, Выражения (46) и (47) выдаются на дисплей для анализа.  

Шаг 4. Выбор величины приоритетного критерия (Принятие решения). 

Лицо, принимающее решение, проводит анализ результатов расчетов (44) и из 

неравенства в натуральных единицах (46) выбирает числовую величину fq, 𝑞 ∈ 𝑲: 

𝑓𝑞(𝑋𝑜) 𝑓𝑞   𝑓𝑞(𝑋𝑞
∗), 𝑞 ∈ 𝑲.                                     (48) 

 Шаг 5. Расчет относительной оценки. 

Для выбранной величины приоритетного критерия fq вычисляется относительная оценка: 

λ𝑞 =
𝑓𝑞−𝑓𝑞

0

𝑓𝑞
∗−𝑓𝑞

0, которая при переходе от точки Xo к 𝑋𝑞
∗,  в соответствии с (43) лежит в 

пределах: 𝜆𝑞(𝑋°)  ≤ 𝜆𝑞 ≤ 𝜆𝑞(𝑋𝑞
∗)  = 1. 

Шаг 6. Вычисление коэффициента линейной аппроксимации.  

Предполагая линейный характер изменения критерия fq(X) в (48) и соответственно 

относительной оценки q(X), используя стандартные приемы линейной аппроксимации, 

вычислим коэффициент пропорциональности  между λ𝑞(𝑋°), λ𝑞: 

 =  
λ𝑞 − λ𝑞(𝑋𝑜)

λ𝑞
∗ −λ𝑞

0 , 𝑞 ∈ 𝑲. 

Шаг 7. Вычисление координат приоритетного критерия с величиной 𝑓𝑞. 

В соответствии с (44) координаты точки приоритетного критерия 𝑋𝑞 лежат в следующих 

пределах: 𝑋𝑜  𝑋𝑞  𝑋𝑞
∗, 𝑞 ∈ 𝑲  

Предполагая линейный характер изменения вектора 𝑋𝑞 =  {𝑥1
𝑞

, … , 𝑥𝑁
𝑞

}  определим 

координаты точки приоритетного критерия с величиной fq c относительной оценкой (45):  

𝑋𝑞 = {𝑥1
𝑞

= 𝑥1
𝑜 + (𝑥𝑞

∗(1) − 𝑥1
𝑜), … , 

𝑥𝑁
𝑞

= 𝑥𝑁
𝑜 + (𝑥𝑞

∗(𝑁) − 𝑥𝑁
𝑜 )},                                  (49) 

*

k
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где 𝑋𝑜 = {𝑥1
𝑜, … , 𝑥𝑁

𝑜 }, 𝑋𝑞
∗ = {𝑥𝑞

∗(1), … , 𝑥𝑞
∗(𝑁)}.. 

Шаг 8. Вычисление основных показателей точки xq. 

Для полученной точки xq (49), вычислим: 

все критерии в натуральных единицах: 𝐹𝑞 = {𝑓𝑘(𝑥𝑞), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅}; 

все относительные оценки критериев: 

𝜆𝑞 = {𝜆𝑘
𝑞

, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}, λ𝑘(𝑥𝑞) =
𝑓𝑘(𝑥𝑞)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅;                                (50) 

вектор приоритетов: 𝑃𝑞 =  {𝑝𝑘
𝑞

=  
 𝜆𝑞(𝑥𝑞)

𝜆𝑘(𝑥𝑞)
, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅} ;  максимальную относительную 

оценку: 𝜆𝑜𝑞 =  min (𝑝𝑘
𝑞

 λ𝑘(𝑥𝑞), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅) . Аналогично (50) может быть рассчитана любая 

точка из множества Парето: 𝑿𝒕
𝒐 = {𝝀𝒕

𝒐, 𝑿𝒕
𝒐}Î  𝑺𝒐. 

Анализ результатов. Рассчитанная величина критерия 𝑓𝑞(𝑋𝑡
𝑜), 𝑞 ∈ 𝑲 обычно не равна 

заданной 𝑓𝑞 . Ошибка выбора 𝑓𝑞 = |𝑓𝑞(𝑋𝑡
𝑜) − 𝑓𝑞|  определяется ошибкой линейной 

аппроксимации. Результаты исследования симметрии в ВЗМП с заданным приоритетом 

аналогичны, как и для ВЗМП с равнозначными критериями, но центр симметрии смещен в 

сторону приоритетного критерия. 

2.4. Исследование и теоретический анализ максиминной задачи с приоритетом 

критерия и максиминной задачи с весовыми коэффициентами. 

В этом разделе мы рассматриваем отдельную задачу многомерной математики: 

векторную задачу нелинейного программирования. Математическое и программное 

обеспечение решения векторной задачи нелинейного программирования, алгоритмы решения 

которой при равнозначных критериях представлен в разделе 3 и при заданном приоритете 

критерия в разделе 4, [20, 22, 43, 45].  

2.4.1. Теоретический анализ максиминной задачи с приоритетом критерия и с 

весовыми коэффициентами 

Рассмотрим и представим максиминную задачу оптимизации (36): 

λ𝑜 =  𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲𝑝𝑘
𝑞

λ𝑘(𝑋), 𝑞 Î 𝑲.                              (36) 

По своей структуре задача (36) внешне не отличается от аналогичной задачи, 

рассмотренной в ряде работ [20]: 

λ𝑜 =  𝑚𝑎𝑥𝑋⋴𝑆𝑚𝑖𝑛𝑘⋴𝐾 𝑤𝑘λ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑋Î𝑆, 𝑋  0,                      (51) 

где λ𝑘(𝑋) =
𝑓𝑘(𝑋)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  – относительная оценка по k-му критерию, 𝑓𝑘
∗, 𝑓𝑘

0  – 

оптимальное и наихудшее соответственно значения k-го критерия, т. е. исследование 

осуществляется в относительных единицах λ𝑘(𝑋) ;   𝑤𝑘  – весовые коэффициенты, 

удовлетворяющие обычным условиям: 

 𝑤𝑘 > 0,  𝑤1 + ⋯ +  𝑤𝑘 = 1,  и выражающие предпочтение критериев. Предпочтение 

определяется тем, что предпочтительному (приоритетному) критерию присваивается больший 

вес. 

Но внутренне задачи (36) и (51) полностью отличаются друг от друга. Покажем это 

отличие на двухкритериальной задаче максимизации: 

𝑓1(𝑋)  → max, 𝑓2(𝑋) → max,                                 (52) 

𝑔(𝑋)  𝑏, 𝑋 = {𝑥1, 𝑥2}, 𝑥1 0, 𝑥2 0,                             (53) 

где множество допустимых точек S описанными ограничениями (53) не пусто, S и 

представляет собой компакт. Построим на основе векторной задачи (52)-(53) максиминную 

задачу с нормализованными критериями: 
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λ𝑜 =  𝑚𝑎𝑥𝑋⋴𝑆𝑚𝑖𝑛𝑘⋴𝐾 (λ1(𝑋), λ2(𝑋)), 𝐾 = 2, 𝑋Î𝑆, 𝑋  0,                        (54) 

где  λ1(𝑋), λ2(𝑋) – относительные оценки по первому и второму критериям, 𝑋1
∗, 𝑋2

∗ – точки 

оптимума, полученные при решении ВЗМП (52)-(53) по первому и второму критериям 

соответственно.  

Максиминную задачу (54) преобразуем в -задачу:  

λ𝑜 =  𝑚𝑎𝑥𝑋⋴𝑆 λ,                                       (55) 

λ − λ1(𝑋) 0,    −  λ2(𝑋) 0.                              (56) 

𝑔(𝑋)  𝑏, 𝑋 = {𝑥1, 𝑥2}, 𝑥1 0, 𝑥2 0 

Представим неравенства (56) в виде равенств, добавив переменные x, x, и вычтем одно 

из них из другого:  λ1(𝑋) – x= λ2(𝑋) – x.  

Дополнительные переменные x и x для двухкритериальной задачи сбалансированы и в 

оптимальной точке равны нулю (и это равенство подтверждает вышеприведенная теорема на 

этапе 2), в итоге: относительные оценки равны λ1(𝑋𝑜)  = λ2(𝑋𝑜).  

Поэтому алгоритм и называется «при равнозначных критериях». 

Рассмотрим, как изменится равенство λ1(𝑋𝑜)  = λ2(𝑋𝑜)  при введении вектора 

приоритета и вектора весовых коэффициентов. Примем, что первый критерий имеет 

приоритет над вторым в 2 раза. Вектор приоритетов будет выглядеть следующим образом:  

𝑷𝟏 =  { 𝑝1
1  =  1,  𝑝2

1  =  2}, 

а вектор весовых коэффициентов: w={ 𝑤1=2/3,  𝑤2=1/3},  𝑤1+ 𝑤2=1.  

Тогда равенство λ1(𝑋𝑜)  = λ2(𝑋𝑜) с вектором приоритетов 𝑃1 имеет следующий вид: 

 𝑝1
1λ1(𝑋𝑜)=  𝑝2

1λ2(𝑋𝑜) или λ1(𝑋𝑜)= 2λ2(𝑋𝑜), 

а с вектором весовых коэффициентов - с точностью наоборот:  

 𝑤1λ1(𝑋𝑜)= 𝑤2λ2(𝑋𝑜) или 2λ1(𝑋𝑜)3=λ2(𝑋𝑜)3 или 2λ1(𝑋𝑜)= λ2(𝑋𝑜). 

В результате решения ВЗМП (51)-(52) с вектором приоритетов 𝑷𝟏  относительная 

оценка по первому критерию λ1(𝑋𝑜) будет в 2 раза выше относительной оценки по второму 

критерию λ2(𝑋𝑜), что и требовалось по условиям задачи. При решении ВЗМП (51)-(52) с 

вектором весовых коэффициентов w относительная оценка по первому критерию λ1(𝑋𝑜) 

будет в 2 раза меньше относительной оценки по второму критерию λ2(𝑋𝑜), что полностью 

противоречит условиям задачи. Покажем этот анализ на примере векторной задачи линейного 

программирования с двумя критериями. 

2.4.2. Исследование максиминной задачи с приоритетом критерия и с весовыми 

коэффициентами на числовом примере 

Пример 6.1. Решения максиминной задачи с приоритетом критерия и с весовыми 

коэффициентами. 

Рассмотрим однородную двухкритериальную векторную задачу линейного 

программирования – максимизации (ВЗЛП): 

𝑂𝑝𝑡 𝐹(𝑋) = {𝑚𝑎𝑥 𝐹1(𝑋) = {𝑚𝑎𝑥 𝑓1(𝑋) 5𝑥1+ 𝑥2, 𝑚𝑎𝑥𝑓2(𝑋) 20𝑥1+80𝑥2}},   (57) 

5𝑥1 +5𝑥2 125, 𝑥1  28, 𝑥2 20, 𝑥10,  𝑥20.                     (58) 

Для решения ВЗЛП (57)-(58) по каждому критерию используется функция linprog, 

которая решает задачу линейного программирования. 

Шаг 1. Получим точки оптимума, показанные на рис. 1:  

𝑋1
∗={𝑥1=28, 𝑥2=1.6}, 𝑓1

∗=141.6;     𝑋2
∗={𝑥1 =5, 𝑥2 =20}, 𝑓2

∗=2500.  

Шаг 2. Не выполняется. Для ВЗЛП с нестрогими ограничениями наихудшие значения 

критериев 𝑓1
0=𝑓2

0=0. В итоге нормализация примет вид λ𝑘(𝑋)= 𝑓𝑘(𝑋)/𝑓𝑘
∗. 
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3. Выполняется анализ критериев, для этого в оптимальных точках 𝑋1
∗, 𝑋2

∗ определяются 

матрицы целевых функций и относительных оценок: 𝐹(𝑋∗) =  FXopt = |
𝑓1(𝑋1

∗) 𝑓2(𝑋1
∗)

 𝑓1(𝑋2
∗) 𝑓𝐾(𝑋2

∗)
| =

|
141.6 752.0
 45.0 2500.0 

|. LXopt = (𝑋∗) = |
1(𝑋1

∗) 2(𝑋1
∗)

 1(𝑋2
∗) 𝐾(𝑋2

∗)
| = |

1.0  0.3008
 0.045  1.0 

| . 

Шаг 4. Строится -задача:  

o = max ,                                      (59) 

 – (5𝑥1+ 1𝑥2)/141.6 0, 

 – (20𝑥1 + 80𝑥2)/ 2500  0, 

5𝑥1+5𝑥2 125, 𝑥1 28, 𝑥2 20, 𝑥10, 𝑥20, 

которая решается обращением к функции linprog. Результаты:  

оптимальные значения переменных: 𝑋𝑜={λ1=0.6547, 𝑥1= 16.3585, 𝑥2=10.9132};    

оптимальное значение целевой функции: λ𝑜 =0.6547. Полученные функции 1(𝑋), 2(𝑋), а 

также точки оптимума 𝑋𝑜 и λ𝑜 на их пересечении, представлены на рис. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 1 – Ограничения и решение ВЗЛП (57)-(58) 

 

Рис. 2. Решение ВЗЛП (57)-(58) и соответствующей 

-задачи с приоритетом первого критерия и 

весовыми коэффициентами 
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Выполним проверку: 

 𝑓1(𝑋𝑜)=92.7, 1(𝑋𝑜)=0.6547; 𝑓2(𝑋𝑜)=1636.8, 2(𝑋𝑜)=0.6547, 

 т. е. λ𝑜𝑘(𝑋𝑜), k = 1, 2.   

Эти результаты показывают, что в точке 𝑋𝑜 оба критерия в относительных единицах 

достигли уровня λ𝑜 = 0.6547 от своих оптимальных величин. Любое увеличение одного из 

критериев выше этого уровня приводит к уменьшению другого критерия: точка 

𝑋𝑜оптимальна по Парето (рис 2).  

Решим ВЗЛП (57)-(58) и соответственно -задачу (59) с заданным  вектором 

приоритетов 𝑃1 =  { 𝑝1
1  =  1,  𝑝2

1  =  2} и вектором весовых коэффициентов w={ 𝑤1=2/3, 

 𝑤2=1/3},  𝑤1+ 𝑤2=1.  

В этом случае -задача примет вид:  

 λ𝑜 =  𝑚𝑎𝑥𝑋⋴𝑆 λ,                                         (60) 

λ −  𝑝1
1 (5𝑥1 +  𝑥2) /𝑓1

∗ 0, 

λ − 𝑝2
1 (20𝑥1 + 80𝑥2) /𝑓2

∗ 0, 

5𝑥1  + 5𝑥2 125, 𝑥1  28, 𝑥2 20, 𝑥10, 𝑥20. 

Для данной задачи при переходе от точки 𝑋𝑜, полученной при равнозначных критериях 

-задачи (60), к точке оптимума 𝑋1
∗ , полученной при решении по первому критерию, 

приоритет первого критерия лежит в пределах:  𝑝1
1(𝑋1

∗) 𝑝2
1 𝑝2

1 (𝑋𝑜).     

Понятие приоритета критерия вытекает из аксиоматики, которая показывает, что 

допустимое множество точек S, в том числе множество точек оптимальных по Парето, 𝑺𝒐, 

лежащее между точками 𝑋1
∗ и 𝑋2

∗, подразделяется на три подмножества точек: 

подмножества 𝑆1  и 𝑆1
𝑜  являются областью приоритета первого критерия над вторым 

(характеризуется тем, что λ1(𝑋)>λ2(𝑋), 𝑋Î𝑆1
𝑜𝑆1𝑺𝒐), 𝑆1

𝑜 лежит между точками 𝑋1
∗ и 𝑋𝑜; 

подмножества 𝑆2  и 𝑆2
𝑜  являются областью приоритета второго критерия над первым 

λ2(𝑋)>λ1(𝑋), 𝑋Î𝑆2
𝑜𝑆2S, 𝑆2

𝑜 лежит между точками 𝑋𝑜 и 𝑋2
∗; 

подмножество точек 𝑆′ S, где критерии равнозначны 1(X)=2(X), 𝑋Î𝑆′𝑺 . 

Подмножеству 𝑆′  принадлежит точка 𝑋𝑜 , в которой λ𝑜 – максимальный уровень, причем 

λ𝑜 = λ1(𝑋𝑜) = λ2(𝑋𝑜) в соответствии с теоремой. 𝑋𝑜 также принадлежит и множеству точек, 

оптимальных по Парето, 𝑺𝒐 (рис. 1, 2).  

В задаче (60) неравенства 𝑝1
1(𝑋1

∗) 𝑝2
1 𝑝2

1 (𝑋𝑜) примут вид  

 𝑝1
1(𝑋1

∗)=3.3245 𝑝2
1 1 = 𝑝2

1 (𝑋𝑜), 

из него выбирается  𝑝2
1, например  𝑝2

1=2, который вводится в -задачу (60). 

В результате решения -задачи (60) с заданным вектором приоритетов получим:  

точку оптимума 𝑋1
𝑜={1=0.8694, 𝑥1=23.5959, 𝑥2 =5.1233} (рис. 2); 

оптимальное значение целевой функции: λ𝑜=0.8694. 

Выполним проверку: 𝑓1(𝑋1
𝑜) = 123.1, 𝑓2(𝑋1

𝑜) = 1086.7,  

λ1(𝑋1
𝑜) = 0.8694, λ2(𝑋1

𝑜) = 0.4347, т. е. λ𝑜 λ1(𝑋1
𝑜) = 2λ2(𝑋1

𝑜) = 0.8694. 

Эти результаты показывают, что в точке оптимума 𝑋1
𝑜, относительная оценка λ1(𝑋1

𝑜) в 

2 раза больше относительной оценки λ2(𝑋1
𝑜) . Это соответствует условиям задачи: о 

приоритете первого критерия над вторым. При этом плоскость, определяемая функцией 

2λ2(𝑋)  в области Парето в точке 𝑋1
𝑜  достигла уровня λ𝑜 = 0.8694, λ2(𝑋1

𝑜) . Это видно на 

пунктирной прямой, проходящей через точку 𝑋1
𝑜. 

В результате решения -задачи (60) с заданным вектором весовых коэффициентов 

w={ 𝑤1=2/3,  𝑤2=1/3} получим:  
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точку оптимума 𝑋2
𝑜={λ1=0.2922, 𝑥1= 9.0615, 𝑥2=16.75} (рис. 1, 2); 

оптимальное значение целевой функции: λ𝑜 = 0.2922, 

Выполним проверку: 𝑓1(𝑋1
𝑜) = 123.1, 𝑓2(𝑋1

𝑜) = 1086.7; 

λ1(𝑋1
𝑜) = 0.8694, λ2(𝑋1

𝑜) = 0.4347, т. е. λ𝑜 λ1(𝑋1
𝑜) = 2λ2(𝑋1

𝑜) = 0.8694 

𝑓1(𝑋2
𝑜) =62.1, 𝑓2(𝑋2

𝑜) =2191.3,  

λ1(𝑋2
𝑜) =0.4383; λ2(𝑋2

𝑜) =0.8765, т. е. λ𝑜 λ1(𝑋2
𝑜)/3 = λ2(𝑋2

𝑜))/3 =0.2922. 

Эти результаты показывают, что в точке оптимума 𝑋2
𝑜 относительная оценка λ1(𝑋2

𝑜) в 

2 раза меньше относительной оценки λ2(𝑋2
𝑜) . Это полностью противоречит условиям 

задачи: исходному заданию о весовых коэффициентах первого критерия над вторым. 

Таким образом, метод, основанный на аксиоматике, нормализации критериев и 

принципе гарантированного результата, дает точные ответы на поставленные условия 

(исходные данные) решения ВЗМП, метод, основанный на весовых коэффициентах, 

полностью противоречит исходному заданию. 

3. Моделирование и выбор оптимальных параметров технологического процесса в 

условиях определенности и неопределенности. 

  Численная реализация выбора оптимальных параметров технологического процесса 

выполнена на базе теории методов многомерной математики. 

Методология численной реализации выбора оптимальных параметров технологического 

процесса представлена, как ряд этапов, которые подразделяются на отдельные блоки, шаги. 

3.1.  Математическая модель технологического процесса в условиях 

определенности и неопределенности в совокупности 

Математическая модель технологического процесса представлена в соответствии с 

сформированной математической моделью в условиях определенности (1b)-(4b) и 

неопределенностью (5b)-(10b) в виде векторной задачи математического программирования: 

𝑂𝑝𝑡 𝐹(𝑋)  =  {𝑚𝑎𝑥 𝐹1(𝑋) = {𝑚𝑎𝑥 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                           (61) 

    𝑚𝑎𝑥 𝐼1(𝑋) ≡ {𝑚𝑎𝑥 𝑦𝑘 (𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},               (62)  

      𝑚𝑖𝑛 𝐹2(𝑋) = {𝑚𝑖𝑛 𝑓𝑘 (𝑋), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

,                             (63)  

𝑚𝑖𝑛 𝐼2(𝑋) ≡ {𝑚𝑖𝑛 𝑦𝑘 (𝑋𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},              (64)  

при ограничениях   𝑓𝑘
𝑚𝑖𝑛  ≤  𝑓𝑘(𝑋) ≤ 𝑓𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,                             (65) 

𝐺(𝑋) ≤ 0, 𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤  𝑥𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅,                                 (66) 

где 𝑋 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}  — это вектор управляемых переменных (параметров) 

технологического процесса; 𝐹(𝑋) = {𝐹1(𝑋) 𝐹2(𝑋) 𝐼1(𝑋) 𝐼2(𝑋)}  представляет векторный 

критерий, каждая компонента которого является вектором характеристик (критериев) 

технологического процесса (31)-(34); Критерии 𝐹1(𝑋) 𝐹2(𝑋)  функционально зависят от 

значений вектора переменных 𝑋, которые обозначены как (61) и (63) 𝐾1
𝑑𝑒𝑓

, 𝐾2
𝑑𝑒𝑓

 (definiteness). 

Сформированные в условиях определенности; 

Критерии  𝐼1(𝑋) 𝐼2(𝑋)  характеризуют дискретные значения функций, которые 

функционально зависят от дискретных значений вектора переменных 𝑋 , обозначены в (62) и 

(64) как  𝐾1
𝑢𝑛𝑐 , 𝐾2

𝑢𝑛𝑐  (uncertainty) множество критериев max и min. Сформированы в  

условиях неопределенности. 

(65) и (66) стандартные ограничения: функциональные, параметрические и общие. 
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3.2.  Техническое задание для формирования математической и, на ее основе, 

численной модели технологического процесса. 

Техническое задание, анализ результатов решения и выбора приоритетного критерия, 

его величины выполняется конструктором материала. 

Остальные этапы выполняются математиком - программистом. 

3.2.1. Техническое задание: Выбор оптимальных параметров технологического 

процесса 

Дано. Исследуется технологический процесс, который характеризуется двумя 

параметрами: 𝑋 = {𝑥1, 𝑥2}. Значения 𝑋 представляют вектор управляемых переменных. 

Заданы параметры технологического процесса 𝑋 = {𝑥1, 𝑥2} , которые изменяются в 

следующих пределах: 2.0  𝑥1  3.5, 12.0  𝑥2 30.0. 

Четыре характеристики (критерии) технологического процесса определяют его 

функционирование: 𝐹(𝑋) = {𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋)}𝑇, зависят от вектора параметров 𝑋. 

Условия определенности. Известна функциональная зависимость от параметров 

технологического процесса для четвертой характеристики 𝑓4(𝑋): 

 𝑋 = {𝑥𝑘, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝐾 = 2}: 

𝑓4(𝑋) = −0.245 − 0. 747𝑥1 +  0. 3831𝑥1
2 +  0. 0442𝑥2  +  0.0012𝑥2

2  −  0.0346𝑥1𝑥2. (67)  

Условия неопределенности. Известны результаты экспериментальных данных: для 

первой, второй и третьей характеристики технологического процесса: 𝑓𝑘(𝑋), 𝑘 = 1, 2, 3 . 

Числовые значения параметров 𝑋 = {𝑥1, 𝑥2}  и характеристик 𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋),  

представлены в таблице 2.  

Таблица 2 

Экспериментальные параметры ввода и вывода. 

Laser Power, p 

(Analog V) 

Мощности 

лазера 

Travel Speed, v 

(mm/sec) 

Скорости 

перемещения 

Wire Feed Rate, r 

(m/min) 

Скорости подачи 

проволоки 

Depth, D(mm) 

Глубина, 

Д (мм) 

Total Accumulated Pore 

Length, Po (mm/mm) 

Общая накопленная 

длина пор 

x1 x2 𝒇𝟏(𝑿)→max 𝒇𝟐(𝑿)→min 𝒇𝟑(𝑿) →max 

2.400 25.201 4.2196 55.3952 -0.0364 

2.760 18.720 3.2715 31.2498 0.0286 

2.760 19.081 3.2771 32.3886 0.0272 

2.760 31.680 4.2614 86.8526 0.0760 

2.760 31.921 4.2948 88.1656 0.0787 

3.300 14.400 3.0958 21.1331 0.3467 

3.300 25.201 3.0102 56.1913 0.2171 

3.300 25.801 3.0382 58.7506 0.2138 

3.300 26.760 3.0909 62.9794 0.2096 

3.300 27.601 3.1442 66.8147 0.2068 

3.300 28.801 3.2321 72.5126 0.2041 

3.300 30.001 3.3337 78.4682 0.2032 

3.300 31.20 3.4496 84.6812 0.2039 

3.300 32.40 3.5793 91.1518 0.2063 

3.300 36.00 4.0516 112.1086 0.2236 

3.840 18.720 3.0984 35.3082 0.6402 
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3.840 23.520 2.9672 51.6458 0.5450 

3.840 31.680 3.2555 88.8758 0.4451 

3.840 32.880 3.3521 95.3551 0.4369 

4.200 25.201 3.2371 60.4633 0.7810 

Min: 2.400 14.400 2.9672 21.1332 -0.0364 

Max: 4.200 36.000 4.2948 112.1087 0.7811 

 

В принимаемом управленческом решении величину оценки первой и третьей 

характеристики желательно, получить как можно выше: 𝑓1(𝑋)→max,  𝑓3(𝑋)→max;  

Оценки второй и четвертой характеристики как можно ниже: 𝑓2(𝑋)→min, 𝑓4(𝑋)→min.  

Параметры технологического процесса 𝑋 = {𝑥1, 𝑥2} изменяются в пределах:  

2.0  𝑥1  3.5, 12.0  𝑥2 30.0.                                (68) 

Требуется. Разработать математическую модель технологического процесса в виде 

векторной задачи математического программирования. Задачу векторной оптимизации 

решить с равнозначными критериями. Выбрать из всего множества критериев приоритетный 

критерий. Установить численное значение приоритетного критерия.  Решить задачу 

векторной оптимизации и принять наилучшее (оптимальное) решение с заданным 

приоритетом критерия.    

3.2.2. Построение математической модели технологического процесса в условиях 

определенности и неопределенности в общем виде  

 Математическая модель технологического процесса в условиях определенности и 

неопределенности разработана виде векторной задачи математического программирования и 

общем виде модель представлена в разделе 3.1. 

3.3.  Построение численной модели технологического процесса с 

функциональной зависимостью от параметров (условия определенности и 

неопределенности).    

3.3.1. Построение математической (численной) модели технологического процесса 

в условиях определенности  

Построение модели технологического процесса с функциональной зависимостью 

определяется тем, что известны характеристики и ограничения от параметров 𝑋 = {𝑥1, 𝑥2}. 

Известны характеристика (67) и ограничения (68). Используя данные (67), (68), построим 

однокритериальную задачу нелинейного программирования - условия определенности [7,11]: 

𝑚𝑎𝑥 𝑓4(𝑋) = −0.245 − 0. 747𝑥1 + 0. 3832𝑥1
2 + 0. 0442𝑥2 + 0.0012𝑥2

2 − 0.0346𝑥1𝑥2,  (69) 

2.0  𝑥1  3.5, 12.0  𝑥2 30.0.                                (70) 

В дальнейшем информационные данные (60), (70) используются при построении 

агрегированной математической технологического процесса. 

3.3.2. Преобразование условий неопределенности (экспериментальных данных) в 

условия определенности и построение численной модели  

Построение модели с условиями неопределенности состоит в использовании 

качественных и количественных описаний технологического процесса, которые получены как 

“вход-выход” и представлены в таблице 2.  

Исходные данные таблицы 2: 𝑓1(𝑥𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑓2(𝑥𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑓3(𝑥𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ) 

преобразуются путем использования математических методов (регрессионного анализа) в 

функциональный вид: 𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋). 

В системе MATLAB исходные данные таблицы 2 сформированы в виде матрицы I: 
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𝐼 = |𝑋, 𝐹| = |
𝑋1 = {𝑥11, 𝑥12}, 𝑓1(𝑋1), 𝑓2(𝑋1), 𝑓3(𝑋1)

…
𝑋𝑀 = {𝑥𝑀1, 𝑥𝑀2}, 𝑓1(𝑋𝑀), 𝑓2(𝑋𝑀), 𝑓3(𝑋𝑀)

|.                        (71) 

На основе экспериментальных данных 𝑓𝑘, 𝑘 = 1,3̅̅ ̅̅  (71) в системе MATLAB строится 

функция регрессии по методу наименьших квадратов min ∑ (𝑓𝑖 − 𝑓𝑖̅)
2𝑀

𝑖=1 . Формируется 

полином Ak, определяющий взаимосвязь параметров  𝑋𝑖 = {𝑥1𝑖 , 𝑥2𝑖} и функции:  

𝑓𝑘𝑖
̅̅̅̅ = 𝑓(𝑋𝑘𝑖 , 𝐴𝑘), 𝑋𝑘𝑖 = {𝑥𝑘𝑖 , 𝑥𝑘𝑖}, k= 1,3̅̅ ̅̅ .                                  (72) 

Результатом является система коэффициентов: 𝐴𝑘={𝐴0𝑘, 𝐴1𝑘, …, 𝐴5𝑘}, k= 1,3̅̅ ̅̅ , 

определяющие коэффициенты функции (полинома):  

𝑓𝑘(𝑋, 𝐴) = 𝑎0𝑘 + 𝑎1𝑘𝑥1 + 𝑎2𝑘𝑥1
2 + 𝑎3𝑘𝑥2 + 𝑎4𝑘𝑥2

2 + 𝑎5𝑘𝑥1𝑥2, 𝑘 = 1,3̅̅ ̅̅ .      (73) 

Для определения коэффициентов полинома (73) функций, таблицы 2, разработано 

программное обеспечение полиномиальной аппроксимации в [18] с двумя переменными и 

пятью факторами. В результате работы программы получены коэффициенты:  

Ao=[11.4751    8.8173   -0.1222     % 𝐴0𝑘 

-4.8994   -7.6807   -0.3735        % 𝐴1𝑘 

0.8868    2.1456    0.1916        % 𝐴2𝑘 

-0.0030    0.1851    0.0221        % 𝐴3𝑘 

0.0048    0.0894    0.0006        % 𝐴4𝑘 

       -0.0595   -0.1454   -0.0173].      % 𝐴5𝑘                      (74) 

С учетом полученных коэффициентов Ao(1) (74) экспериментальные данные 

{𝑥1𝑖 , 𝑥2𝑖 , 𝑓1𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ } матрицы 𝐼 = |𝑋, 𝐹| (74) преобразуются в функцию (73) 𝑓1(𝑋).  

С учетом полученных коэффициентов Ao(2) (74) экспериментальные данные 

{𝑥1𝑖 , 𝑥2𝑖 , 𝑓2𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ } матрицы 𝐼 = |𝑋, 𝐹| (74) преобразуются в функцию (73) 𝑓2(𝑋).  

С учетом полученных коэффициентов Ao(3) экспериментальные данные 

{𝑥1𝑖 , 𝑥2𝑖 , 𝑓3𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ } матрицы 𝐼 = |𝑋, 𝐹| (74) преобразуются в функцию (73) 𝑓3(𝑋). 

В итоге экспериментальные данные таблицы 1 сформированы с учетом 

целенаправленности в векторную задачу математического программирования: 

𝑚𝑎𝑥 𝑓1(𝑋) = 11.474 − 4.899𝑥1 + 0.8868𝑥1
2 − 0.003𝑥2 + 0.0048𝑥2

2 − 0.0595𝑥1𝑥2.  (75) 

𝑚𝑎𝑥 𝑓2(𝑋) = 8.817 − 7.681𝑥1 + 2.145𝑥1
2 + 0.1851𝑥2 + 0.0894𝑥2

2 − 0.1454𝑥1𝑥2.   (76) 

𝑚𝑎𝑥 𝑓3(𝑋) = −0.12251 − 0.3736𝑥1 + 0.1916𝑥1
2 + 0.0222𝑥2 + 0.0006𝑥2

2 − 0.0173𝑥1𝑥2. 

2.0  𝑥1  3.5, 12.0  𝑥2 30.0.                                (77) 

3.3.3. Математическая числовая модель технологического процесса с 

агрегированными данными эксперимента в условиях определенности. 

Используя функции задачи (69)-(70), полученные условиях определенности, и функции 

задачи (75)-(77), полученные условиях неопределенности – экспериментальных данных, 

параметрические ограничения (77) представим математическую модель технологического 

процесса. Мы рассматриваем математические функции (69), (75), (76), (77) как критерии, 

которые характеризуют целенаправленность функционирования технологического процесса. 

Множество критериев K=4 включают: подмножество критериев 𝐾1 = 2 , направленых на 

максимизацию функций {𝑓1(𝑋), 𝑓3(𝑋)} → max ; подмножество критериев 𝐾2 = 2 , 

направленых на минимизацию: {𝑓2(𝑋), 𝑓4(𝑋)}  → min, 𝐾 = 𝐾1 ∪ 𝐾2.  

Критерии 𝐾 = 𝐾1 ∪ 𝐾2  дополняются ограничениями и формируется математическую 

численная модель функционирования технологического процесса, представленной векторной 

задачей математического программирования:  
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  𝑂𝑝𝑡 𝐹(𝑋) = {𝑚𝑎𝑥 𝐹1(𝑋) = {𝑚𝑎𝑥 𝑓1 (𝑋) 11.474 −  4.899𝑥1  +  0.8867𝑥1
2  −  0.0031𝑥2  +

 0.0048𝑥2
2  −  0.0595𝑥1𝑥2,                      (78) 

    𝑚𝑎𝑥 𝑓3 (𝑋) −0.1225 − 0.3735𝑥1 + 0.1916𝑥1
2 + 0.0221𝑥2 + 0.0006𝑥2

2 − 0.0173𝑥1𝑥2, (79) 

𝑚𝑖𝑛 𝐹2(𝑋) = {𝑚𝑖𝑛 𝑓2 (𝑋)8.817 − 7.68𝑥1 + 2.1456𝑥1
2 + 0.185𝑥2 + 0.0894𝑥2

2 − 0.145𝑥1𝑥2,(80) 

𝑚𝑖𝑛 𝑓4(𝑋) − 0.2451 − 0. 7471𝑥1 + 0. 3832𝑥1
2 + 0. 0442𝑥2 + 0.0012𝑥2

2 − 0.0346𝑥1𝑥2}}, (81) 

при ограничениях: 2.01  𝑥1  3.5, 12.01  𝑥2 30.01,                     (82) 

ВЗМП (78)-(82) представляет математическую модель технологического процесса для 

принятия оптимального решения в совокупности с условиями определенности и 

неопределенности. 

3.4.  Программное обеспечение решения векторной задачи нелинейного 

программирования при равнозначных критериях и заданном приоритете критерия 

Для решения векторной задачи нелинейного программирования (ВЗНП) (2.1)-(2.4) при 

равнозначных критериях разработана программа в системе MATLAB, которая по существу 

представляет программу – шаблон для написания и решения других векторных задач 

нелинейного программирования (2.1)-(2.4) – математических моделей инженерных систем. 

3.4.1. Характеристика программного обеспечение решения ВЗНП 

Программное обеспечение решения векторной задачи нелинейного программирования 

(2.1)-(2.4), на базе которой сформированы модели инженерных систем, реализовано на основе 

алгоритма решения ВЗНП, изложенного в предыдущих разделах. При решении ВЗНП по 

каждому критерию использована программа FMINCON(…) в системе MATLAB.  

При использовании программы FMINCON(…) необходимо разработать два комплекса 

подпрограмм – функций для критериев и решения λ-задачи. 

Первая подпрограмма - функция включает два блока: первый блок предназначен для 

оценки в точке 𝑋 критерия 𝑓𝑘(𝑋)𝑘ÎК; второй блок для расчета первой производной в этой 

точке 
𝑑𝑓𝑘(𝑋)

d𝑋
𝑘ÎК. (Подпрограмма 14: Z_TS_Krit1max_MMTT38) 

Вторая подпрограмма - функция включает расчеты λ -задачи для критерия и 

ограничения. Для расчета критерия функция включает те же два блока: первый блок 

предназначен для оценки в точке 𝑋 критерия 𝑓𝑘(𝑋)𝑘ÎК; второй блок для расчета первой 

производной в этой точке 
𝑑𝑓𝑘(𝑋)

d𝑋
𝑘ÎК. (Подпрограмма 14: Z_TS_4Krit_L_MMTT38). Для 

расчета для ограничений 𝑔𝑖(𝑋) ,𝑖 Î 𝑴 и второй блок для расчета первой производной в этой 

точке 
𝑑𝑔𝑖(𝑋)

d𝑋
𝑖Î𝑴. (Подпрограмма 15; Z_TS_LConstV2_v2_MMTT38(x)) 

Программа FMINCON(…) используется на первом шаге алгоритма решения ВЗНП 

раздела 2.2.3 и на втором шаге алгоритма (минимизации).  Аналогично в соответствии с 

алгоритмом на 4 и 5 шаге решается -задача.  

В целом при нелинейных ограничениях программное обеспечение решения ВЗНП с «К» 

критериями включает: К*2(1 шаг) + К*2(2 шаг)+2(-задача) функций. Так как критерии и 

ограничения ВЗНП индивидуальны, то для каждой ВЗНП пишется индивидуальное 

программное обеспечение. 

В прорамме используется 17 подпрограмм (см. ниже по тексту). 

Для решения ВЗНП (2.1)-(2.4) в [43, 44] представлен текст программы, которая по 

существу представляет программу – шаблон для написания и решения других ВЗНП (2.1)-(2.4) 

– математических моделей инженерных систем.  
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3.4.2. Текст программного обеспечение решения векторной задачи нелинейного 

программирования – модели технологического процесса. 

% Программа "Решение векторной задачи нелинейного программирования." - файл: Z_TS5Krit_ProfHeinz 

 function [x,f] = Z_TS5Krit_Svarka_v4_Primer_PRN_MMTT38(A) 

% Автор: Машунин Юрий Константинович 

% Алгоритм и программа предназначена дл. использован. в образовании и научных  

% исследован., дл. коммерческого использован. обращатьс.: Mashunin@mail.ru   

% opt F(X={max F1(X)={max f1(X)=A(1,1)+A(2,1)*x1+A(3,1)*x1.^2+A(4,1)*x2+A(5,1)*x2.^2+A(6,1)*x1.*x2',   

(3.1)  

%                     max f2(X)=A(1,2)+A(2,2)*x1+A(3,2)*x1.^2+A(4,2)*x2+A(5,2)*x2.^2+A(6,2)*x1.*x2},   (3.2) 

%          min F2(X)={max f3(X)=A(1,3)+A(2,3)*x1+A(3,3)*x1.^2+A(4,3)*x2+A(5,3)*x2.^2+A(6,3)*x1.*x2,    

(3.3) 

%                     min f4(X)=A(1,4)+A(2,4)*x1+A(3,4)*x1.^2+A(4,4)*x2+A(5,4)*x2.^2+A(6,4)*x1.*x2}},  (3.4) 

%      1000<=f2(X)=A(1,2)+A(2,2)*x1+A(3,2)*x1.^2+A(4,2)*x2+A(5,2)*x2.^2+A(6,2)*x1.*x2<=2100;    

%               20<=x1<=80, 20<=x2<=80;                                                                (3.5)  

% Algorithm VZNP: Kittery + L-zadaha 

%[X,Fval,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN]= 

%                                 FMINCON(FUN,Xo,A,b,Aeq,beq, lb,ub,nonlcon,options,P1,P2,...) 

% A - матрица коэффициентов,Pq - ??????, Zn -знак у производной, k - номер критерия  

global A Zn k Sk 

global Pq FXopt FXmin d1 d2 d3 d4 d5 Kmm  

%options=optimset('LargeScale','on'); 

options=optimset('LargeScale','off')   %,'Algorithm','active-set'); 

options=optimset(options,'GradObj','on','GradConst','on'); 

disp('*** БЛОК 1. Решение векторной задачи нелинейного программирован.- ВЗНП:***') 

disp('*** Исходные данные ВЗНП:***') 

disp('opt F(X)={max F1(X)={max f1(X)=A(1,1)+A(2,1)*x1+A(3,1)*x1.^2+A(4,1)*x2+A(5,1)*x2.^2+A(6,1)*x1.*x2') 

disp('                     max f2(X)=A(1,2)+A(2,2)*x1+A(3,2)*x1.^2+A(4,2)*x2+A(5,2)*x2.^2+A(6,2)*x1.*x2') 

disp('          min F2(X)={max f3(X)=A(1,3)+A(2,3)*x1+A(3,3)*x1.^2+A(4,3)*x2+A(5,3)*x2.^2+A(6,3)*x1.*x2') 

disp('                     min f4(X)=A(1,4)+A(2,4)*x1+A(3,4)*x1.^2+A(4,4)*x2+A(5,4)*x2.^2+A(6,4)*x1.*x2') 

disp('  1000<=f2(X)=A(1,2)+A(2,2)*x1+A(3,2)*x1.^2+A(4,2)*x2+A(5,2)*x2.^2+A(6,2)*x1.*x2<=3100') 

disp('    20<=x1<=80, 20<=x2<=80')  

Sk=[-1 -1 -1  1 -1]; disp(Sk)   % Критерии: -1 -> max; 1 -> min 

lb=[20. 20.];   ub=[80. 80.];   Xo=[20. 20.]; 

%   A(:,1)  A(:,2)  A(:,3)  A(:,4)   

%Критерий 5 используются для развития системы  

A=[11.4745    8.8176   -0.1225   -0.1225*2   -0.1225;  % FX*1.2  Z_5factor2per_Svarka_v4_Primer 

   -4.8992   -7.6809   -0.3735   -0.3735*2   -0.3735; 

    0.8868    2.1456    0.1916    0.1916*2    0.1916; 

   -0.0030    0.1851    0.0221    0.0221*2    0.0221; 

    0.0048    0.0894    0.0006    0.0006*2    0.0006; 

   -0.0595   -0.1454   -0.0173   -0.0173*2   -0.0173] 

lb=[2. 12.]   % lb=[4. 24.]  

ub=[3.5 30.]  % ub=[7. 60.] 

X0=[2. 12.]   % X0=[2. 12.]  %A=1.0*Ai 
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Pq=[1 1 1 1 1];     

Az=[1 0;  % Az,bz - Матрица ограничений заданная  

    0 1];  

bz=[3.5 30]  

Aeq=[]; beq=[];  

disp('*** Решение ВЗНП при равнозначных критери_х ***')  

disp('*** Шаг 1. Решение по каждому критерию (наилучшее) ***')  

for i=1:5    %Критерии - оптимум 

   k=i 

   Zn=Sk(i) 

   if k==1 

      X0=[3.2 27.]  

  elseif k==2 

      X0=[3.3 13.]  

  else 

      X0=[3.2 13.]   

   end 

%[xKmax,fKmax]=fmincon('Z_TS_Krit1max',Xo,Az,bz,Aeq,beq,lb,ub,'Z_TS_4Krit_Const',options); 

[xKmax,fKmax]=fmincon('Z_TS_Krit1max_MMTT38',X0,Az,bz,Aeq,beq,lb,ub,'',options); 

 s=strcat('Критерий: f',num2str(k),'max=',num2str(fKmax),' Точка: х',num2str(k),'max=',num2str(xKmax)); 

disp(s)  

for j=1:5   % Величина критер. в точке оптимума 

   k=j; 

   Zn=Sk(j); 

   fXopt=[Z_TS_Krit1max_MMTT38(xKmax)];  

   FXopt(i,j)=fXopt; 

  end 

Xopt(i,:)=xKmax 

FXopt 

end 

disp('*** Шаг 2. Решение по каждому критерию (наихудшее-антиоптимум) ***')  

for i=1:5 

   k=i 

   Zn=-Sk(i) 

     if k==1 

      X0=[2.2 13.]  

  elseif k==2 

      X0=[2.1 12.5]  

      else 

      X0=[2.3 13.]   

     end 

%[xKmin,fKmin]=fmincon('Z_TS_Krit1max',Xo,Az,bz,Aeq,beq,lb,ub,'Z_TS_4Krit_Const',options); 

[xKmin,fKmin]=fmincon('Z_TS_Krit1max_MMTT38',X0,Az,bz,Aeq,beq,lb,ub,'',options); 

s=strcat('Критерий: f',num2str(k),'min=',num2str(fKmin),' Точка: х',num2str(k),'min=',num2str(xKmin)); 

disp(s)  
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  for j=1:5 

    k=j; 

    Zn=-Sk(j); 

       fXmin=[Z_TS_Krit1max_MMTT38(xKmin)];  

    FXmin(i,j)=fXmin; 

   end 

 Xmin(i,:)=xKmin 

 FXmin 

end 

disp('*** Шаг 3. Блок нормализации и анализа результатов ***')%  

%Xopt FXopt: Xmin  FXmin  Точки оптимума и Антиоптимума и Критерии 

d1=-FXopt(1,1)-FXmin(1,1)      % d1=37.1381 

d2=-FXopt(2,2)-FXmin(2,2)      % d2=1.7000e+003 

d3=-FXopt(3,3)-FXmin(3,3)      % d3=1.9029e+003 

d4=-FXopt(4,4)-FXmin(4,4)      % d4=-201.45 

d5=-FXopt(5,5)-FXmin(5,5)      % d4=-201.45 

d=[d1 d2 d3 d4 d5] 

F=FXopt 

L=[(-F(1,1)-FXmin(1,1))/d1 (-F(1,2)-FXmin(2,2))/d2 (-F(1,3)-FXmin(3,3))/d3 (-F(1,4)-FXmin(4,4))/d4 (-F(1,5)-

FXmin(5,5))/d5; 

   (-F(2,1)-FXmin(1,1))/d1 (-F(2,2)-FXmin(2,2))/d2 (-F(2,3)-FXmin(3,3))/d3 (-F(2,4)-FXmin(4,4))/d4 (-F(2,5)-

FXmin(5,5))/d5; 

   (-F(3,1)-FXmin(1,1))/d1 (-F(3,2)-FXmin(2,2))/d2 (-F(3,3)-FXmin(3,3))/d3 (-F(3,4)-FXmin(4,4))/d4 (-F(3,5)-

FXmin(5,5))/d5; 

   (-F(4,1)-FXmin(1,1))/d1 (-F(4,2)-FXmin(2,2))/d2 (-F(4,3)-FXmin(3,3))/d3 (-F(4,4)-FXmin(4,4))/d4 (-F(4,5)-

FXmin(5,5))/d5;  

   (-F(5,1)-FXmin(1,1))/d1 (-F(5,2)-FXmin(2,2))/d2 (-F(5,3)-FXmin(3,3))/d3 (-F(5,4)-FXmin(4,4))/d4 (-F(5,5)-

FXmin(5,5))/d5]  

 

disp('*** Шаг 4. Решение L-задачи ***')%  

Ao=[1 0 0; 

    0 1 0; 

    0 0 1];  

bo=[bz 1]; Aeq=[]; beq=[]; 

X0=[2.5 25. 0.1] 

%X0=[3.5 25. 0.1]  %X0=[lb 0.]  %25 25 0.3];     % Xo = 

lbo=[lb 0.];    % Lo =- 

ubo=[ub 1]; 

[Xo,Lo]=fmincon('Z_TS_4Krit_L_MMTT38',X0,Ao,bo,Aeq,beq,lbo,ubo,'Z_TS_LConstV2_v2_MMTT38',options) 

%Xo = 47.4028   51.2826    0.3558    Lo = -0.3558 

for j=1:5 

   k=j; 

   Zn=Sk(j); 

   fXo=[Z_TS_Krit1max_MMTT38(Xo(1:2))];  

   FXo(j)=fXo; 
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  end 

LXo=[(-FXo(1)-FXmin(1,1))/d1 (-FXo(2)-FXmin(2,2))/d2 (-FXo(3)-FXmin(3,3))/d3 (-FXo(4)-FXmin(4,4))/d4 (-

FXo(5)-FXmin(5,5))/d5] 

 

[FXo,LXo]=Z_TehnSist_F_L_MMTT38(Xo) 

disp('***** Решение с двумя Критериями: 1 - 2 ******')%  

X012=[2.5 27 0.1]; lbo12=[lb 0.]; ubo12=[ub 1.];  

[Xo12,Lo12] = 

fmincon('Z_TS_4Krit_L_MMTT38',X012,Ao,bo,Aeq,beq,lbo12,ubo12,'Z_TS_12_LConst_3Kr_MMTT38',options) 

[F12,L12]=Z_TehnSist_F_L_MMTT38(Xo12)  

disp('*** Решение с двумя Критериями: 1 - 3 ***')%  

X013=[2.7 24 0.2]; lbo13=[lb 0.]; ubo13=[ub 1.];  

[Xo13,Lo13] = 

fmincon('Z_TS_4Krit_L_MMTT38',X013,Ao,bo,Aeq,beq,lbo13,ubo13,'Z_TS_13_LConst_3Kr_MMTT38',options) 

[F13,L13]=Z_TehnSist_F_L_MMTT38(Xo13)  

disp('***** Решение с двум Критер.: 2 - 3 ******')%  

X023=[3.2 20  0.1]; lbo23=[lb 0.]; ubo23=[ub 1.];  

[Xo23,Lo23] = 

fmincon('Z_TS_4Krit_L_MMTT38',X023,Ao,bo,Aeq,beq,lbo23,ubo23,'Z_TS_23_LConst_MMTT38',options) 

[F12,L12]=Z_TehnSist_F_L_MMTT38(Xo12)  

disp('*** Решение с двум Критер.: 3 - 5 ***')%  

X035=[lb 0.1];  

lbo35=[lb 0.];  ubo35=[ub 0.3];  

[Xo35,Lo35] = 

fmincon('Z_TS_4Krit_L_MMTT38',X035,Ao,bo,Aeq,beq,lbo35,ubo35,'Z_TS_35_LConst_MMTT38',options) 

[F35,L35]=Z_TehnSist_F_L_MMTT38(Xo35)  

disp('*** Решение с двум. Критер.: 5 - 4 ***')%  

X054=[lb 0.1];  

lbo54=[lb 0.];  ubo54=[ub 0.3];  

[Xo54,Lo54] = 

fmincon('Z_TS_4Krit_L_MMTT38',X054,Ao,bo,Aeq,beq,lbo54,ubo54,'Z_TS_54_LConst_MMTT38',options) 

[F54,L54]=Z_TehnSist_F_L_MMTT38(Xo54)  

disp('*** Решение с двум. Критер.: 4 - 2 ***')%  

X042=[lb 0.1];   

lbo42=[lb 0.]; ubo42=[ub 1.];  

[Xo42,Lo42] = 

fmincon('Z_TS_4Krit_L_MMTT38',X042,Ao,bo,Aeq,beq,lbo42,ubo42,'Z_TS_42_LConst_MMTT38',options) 

[F42,L42]=Z_TehnSist_F_L_MMTT38(Xo42)  

                          

disp('*** БЛОК 3. Решение ЗАДАЧИ с ПРИОРИТЕТОМ КРИТЕР. ***')%  

X=[Xopt; Xo(1:2)] 

fXo=[-FXo(1) -FXo(2) -FXo(3) -FXo(4)]; 

s=strcat('Критерии в точке оптимума Хо: FXo = ',num2str(fXo)); %Конкатенаци.строк 

disp(s) 

s=strcat('Относительные оценки в Хо;  LXo = ',num2str(LXo)); %Конкатенаци.строк 
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disp(s) % Относительные оценки в Хо;  LXo  

disp('*** ВЫВОД: Критерии 1 и 3 наиболее противоречивы, из них выбираем приоритетный ***')%  

disp('МММММММММ L-задача с приоритетом 3 критер. P=[p31 р32 р33 р34] ММММММММММ') 

q=input('Введите приоритетный критерий (номер) ');  % Ввели: q=3 

s=strcat('Приоритетный критерий (номер) q=',num2str(q)); %Конкатенаци.строк 

disp(s) 

fqXopt=F(q,q); fqXo=FXo(q); 

if Sk(q)=='0'            %Sk(q) 

   s=strcat('Пределы приоритет.крит.: fq(Xo)= ',num2str(fqXo),'=>fq(X)=>',num2str(fqXopt),' =fq(Xq*)'); 

else  

   s=strcat('Пределы приоритет.крит.: fq(Xo)= ',num2str(fqXo),'<=fq(X)<=',num2str(fqXopt),' =fq(Xq*)');  

end 

disp(s) % Пределы приоритет.крит.: fq(Xo)=2084.1402=>fq(X)=>1000 =fq(Xq*) 

s=strcat('Введите величину приоритетного критер. q=',num2str(q),' fq='); %Конкатенаци.строк 

fq=input(s)  % Введите величину приоритетного критер. q=2 fq=1500 

             % s=strcat('d',num2str(q)) 

LqXq=(fq-FXmin(q,q))/d(q)  %  LqXq = 0.0.7619 % d2= f2min+f2max      % d2=-2.1000e+003 

Kp=(LqXq-LXo(q))/(1-LXo(q))  %коэффициент пропорциональности LXo(1) LqXq LX*    Kp = 0.6167 

s=strcat(' **** Блок определен. координат точки с fq=',num2str(fq)) 

X=[Xopt; Xo(1:2)] 

Xq=[Xo(1)+Kp*(X(q,1)-Xo(1)) Xo(2)+Kp*(X(q,2)-Xo(2))]   % ...    Xo(o2)+Kp*(X(q,o2)-Xo(o2)) 

Xo(4)+Kp*(X(q,4)-Xo(4))] 

XqXo=[Xq(1) Xq(2)]      % Xq(3) Xq(4) Xo(5)] 

s=strcat('Координаты точки Xq=[x1=',num2str(Xq(1)),' x2=',num2str(Xq(2)))   %, ... ' x3=',num2str(Xq(3)),' 

x4=',num2str(Xq(4)),']') 

[FXq,LXq]=Z_TehnSist_F_L_MMTT38(XqXo) %[FXq,LXq]=Z38_TS_F_L(XqXo)   

disp('Определение приоритетов критер.') 

PqXq=[LXq(q)/LXq(1) LXq(q)/LXq(2)]     %  LXq(q)/LXq(3) LXq(q)/LXq(4)]  

minLXq=min(LXq)         % minLXq =   0.1929 

   LXqPq=LXq(1:2).*PqXq      %    LXqPq =    0.7242    0.7242    0.7242    0.7242 

minLXqPq=min(LXq(1:2).*PqXq) % minLXqPq =  0.7242 

      %**********************MMMMMMMM************************* 

disp('*** Решение L-задачи с приоритетом критер.***')%  

PqXopt=[L(q,q)/L(q,1) L(q,q)/L(q,2) L(q,q)/L(q,3) L(q,q)/L(q,4) L(q,q)/L(q,5)] % Приоритет 

Pq(Xq*)=Lq(Xq*)/Lk(Xq*)  

PqXo=[LXo(q)/LXo(1) LXo(q)/LXo(2) LXo(q)/LXo(3) LXo(q)/LXo(4) LXo(q)/LXo(5)]   % Приоритет Pq(Xo) = 

Lq(Xo)/Lk(Xo) 

        % PqXo =   0.5168    1.0000    1.0000    0.5080 

Pq=[PqXo(1)+(PqXopt(1)-PqXo(1))*Kp PqXo(2)+(PqXopt(2)-PqXo(2))*Kp ... 

    PqXo(3)+(PqXopt(3)-PqXo(3))*Kp (PqXo(4)+(PqXopt(4)-PqXo(4))*Kp) (PqXo(5)+(PqXopt(5)-PqXo(5))*Kp)]     

%/6] 

disp('*** Решение L-задачи с приоритетом критер.***')%  

Ao=[1 0 0; 

    0 1 0; 

    0 0 1];  
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bo=[bz 1]; Aeq=[]; beq=[]; 

X0=[3.3 25 1];  

lbo=[lb 0.];  

ubo=[ub 1.];  

[Xoo,Loo] = fmincon('Z_TS_4Krit_L_MMTT38',X0,Ao,bo,Aeq,beq,lbo,ubo,'Z_TS_LConstV2_v1_MMTT38',options) 

[FPq,LPq]=Z_TehnSist_F_L_MMTT38(Xoo(1:2)) 

LooPq=LPq.*Pq                      %LooPq =  0.7870    0.8782    3.1025    0.7870 

%fq=input(s) 

Ofq=fq+FPq(2)      %Ошибка Ofq = -292.9213 

Odfq=Ofq/fq*100    %Ошибка в процентах Odfq = -5.8584 

% MMMMMMMM 

disp('****** ГРАФИКА **********') %  

disp('****** РИСУНОК 1. Проекц. на 2-х мерную плоскость **********') %  

figure(1) 

X=[Xopt; Xo(1:2)] 

MX=[max(X(:,1)) max(X(:,2))]      %MX = 80.0 80.0 

xxx = [2:0.1:3.5]; yyy = [12:0.5:30];[x1,x2]=meshgrid(xxx,yyy); 

xL=[X(1,1) X(2,1) X(3,1) X(4,1) X(1,1)];  

yL=[X(1,2) X(2,2) X(3,2) X(4,2) X(1,2)];  

plot(xL,yL,'k.-'); hold on; 

x1max1=X(1,1);  x1max2=X(1,2);  plot(x1max1,x1max2,'k.');hold on; %Точка оптимума 1 

       text(x1max1+0.04,x1max2+0.5,'X^*','Color','r');hold on;       

       text(x1max1+0.04,x1max2+0.5-0.4,'    1','FontSize',6,'Color','r');hold on; 

x2max1=X(2,1);  x2max2=X(2,2);   plot(x2max1,x2max2,'k.');hold on; 

       text(x2max1+0.03,x2max2,'X^*','Color','r');hold on;      

       text(x2max1+0.03,x2max2-0.4,'    2','FontSize',6,'Color','r');hold on; 

x3max1=X(3,1);  x3max2=X(3,2);   plot(x3max1,x3max2,'k.');hold on;  

       text(x3max1+0.03,x3max2+0.5,'X^*','Color','r');hold on;        

       text(x3max1+0.03,x3max2+0.5-0.4,'    3','FontSize',6,'Color','r');hold on;     

x4max1=X(4,1);  x4max2=X(4,2);   plot(x4max1,x4max2,'k.');hold on; 

       text(x4max1+0.03,x4max2-0.5,'X^*','Color','r');hold on;      

       text(x4max1+0.03,x4max2-0.5-0.4,'    4','FontSize',6,'Color','r');hold on;   

%x5min1=X(5,1);  x5min2=X(5,2);   plot(x5min1,x5min2,'k.');hold on;   

%Точка 5 критерий 

%       text(x5min1-0.12,x5min2-0.5,'X^*');hold on;     %text(x4min1+1,x4min2,'X4min');hold on; 

%       text(x5min1-0.12,x5min2-0.5-0.4,'    5','FontSize',6);hold on; 

%******MIN****** 

x1max1=Xmin(1,1);  x1max2=Xmin(1,2);  plot(x1max1,x1max2,'k.');hold on; %Точка оптимума 1 

       text(x1max1+0.03,x1max2,'X^0');hold on;        

       text(x1max1+0.03,x1max2-0.4,'    1','FontSize',6);hold on; 

x2min1=Xmin(2,1);  x2min2=Xmin(2,2);   plot(x2min1,x2min2,'k.');hold on; 

       text(x2min1+0.03,x2min2+0.5,'X^0');hold on;     

       text(x2min1+0.03,x2min2+0.5-0.4,'    2','FontSize',6);hold on; 

x3max1=Xmin(3,1);  x3max2=Xmin(3,2);   plot(x3max1,x3max2,'k.');hold on;   

       text(x3max1+0.03,x3max2+0.5,'X^0');hold on;                       
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       text(x3max1+0.03,x3max2+0.5-0.4,'    3','FontSize',6);hold on;     

x4min1=Xmin(4,1);  x4min2=Xmin(4,2);   plot(x4min1,x4min2,'k.');hold on; 

       text(x4min1+0.04,x4min2-0.7,'X^0');hold on;                   

       text(x4min1+0.04,x4min2-0.7-0.4,'    4','FontSize',6);hold on;   

Xo1=X(6,1);  Xo2=X(6,2);   plot(Xo1,Xo2,'k.');hold on;          

       text(Xo1-0.06,Xo2-0.6,'X^o');hold on;  

xL=[Xo(1) X(1,1) Xo(1) X(2,1) Xo(1) X(3,1) Xo(1) X(4,1) Xo(1)];  

yL=[Xo(2) X(1,2) Xo(2) X(2,2) Xo(2) X(3,2) Xo(2) X(4,2) Xo(2)];  

plot(xL,yL,'r.--'); hold on; 

disp('*** Построение точки с приоритетом q-го критер.***')% 

xL=[Xo(1) X(q,1)];  

yL=[Xo(2) X(q,2)];  

plot(xL,yL,'r.-'); hold on; 

plot(Xq(1),Xq(2),'k.');hold on;              %Точка оптимума {x3max1=0  x3max2=0} 

text(Xq(1)+0.03,Xq(2),'Xq');hold on; 

A=[11.4745    8.8176   -0.1225   -0.1225*2   -0.1225;  % FX*1.2  Z_5factor2per_Svarka_v4_Primer 

   -4.8992   -7.6809   -0.3735   -0.3735*2   -0.3735; 

    0.8868    2.1456    0.1916    0.1916*2    0.1916; 

   -0.0030    0.1851    0.0221    0.0221*2    0.0221; 

    0.0048    0.0894    0.0006    0.0006*2    0.0006; 

   -0.0595   -0.1454   -0.0173   -0.0173*2   -0.0173] 

text(2.1,28,'f  = 11.474-4.89925*x  +0.88681*x ^2-0.00305*x  + ...','Fontsize',8);hold on; 

text(2.1,28-0.4,'  1                                          1                          1                          2   

','FontSize',6);hold on; 

text(2.2,27,'\lambda  \geq \lambda  ,\lambda  ,\lambda  ','Fontsize',8);hold on;    

text(2.2,27-0.4,'   1        2     3     4 ','FontSize',7);hold on;  

 

text(2.8,26,'f = 8.8176-7.681*x  +2.145*x  ^2+0.185*x  + ...','Fontsize',8);hold on; 

text(2.8,26-0.4,'  2                                   1                    1                      2 ' ,'FontSize',6);hold 

on; 

text(2.9,25,'\lambda  \geq \lambda  ,\lambda  ,\lambda  ','Fontsize',8);hold on;      

text(2.9,25-0.4,'   2       1     3     4 ','FontSize',7);hold on; 

 

text(2.8,16,'f  =-0.122-0.3735*x  +0.1916*x ^2+0.0221*x  + ...','Fontsize',8);hold on; 

text(2.8,16-0.5,'  3                                     1                      1                         

2','FontSize',6);hold on; 

text(2.9,15,'\lambda  \geq \lambda  ,\lambda   ,\lambda  ','Fontsize',8);hold on; 

text(2.9,15-0.5,'   3        1      2     4 ','FontSize',7);hold on; 

 

text(2.1,18,'f  =-0.245-0.7475*x  +0.3832*x ^2+0.0442*x  + ...','Fontsize',8);hold on; 

text(2.1,18-0.4,'  4                                      1                       1                        

2','FontSize',6);hold on; 

text(2.2,17,'\lambda  \geq \lambda  ,\lambda  ,\lambda  ','Fontsize',8);hold on;  

text(2.2,17-0.4,'   4        1     2     3 ','FontSize',7);hold on; 

xlabel('x1');hold on; ylabel('x2');hold on; 
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title('Set of Pareto on two-measure plane. Машунин Ю.К.');hold on; 

%title('Множество Парето ка 2-х мерной плоскости');hold on; 

 

disp('***********РИСУНОК 2 НЕЛИНЕЙН. ЗАДАЧA 4 КРИТЕР.**************');  

figure(2) 

xxx = [2:0.1:3.5]; yyy = [12:0.5:30];[x1,x2]=meshgrid(xxx,yyy); 

f1=A(1,1)+A(2,1)*x1+A(3,1)*x1.^2+A(4,1)*x2+A(5,1)*x2.^2+A(6,1)*x1.*x2; 

[FX1omax,LX1omax]=Z_TSis_F_L_MMTT38(X(1,:))   

f2=A(1,2)+A(2,2)*x1+A(3,2)*x1.^2+A(4,2)*x2+A(5,2)*x2.^2+A(6,2)*x1.*x2; 

[FX2omax,LX2omax]=Z_TSis_F_L_MMTT38(X(2,:))  

f3=A(1,3)+A(2,3)*x1+A(3,3)*x1.^2+A(4,3)*x2+A(5,3)*x2.^2+A(6,3)*x1.*x2; 

[FX3omax,LX3omax]=Z_TSis_F_L_MMTT38(X(3,:))  

f4=A(1,4)+A(2,4)*x1+A(3,4)*x1.^2+A(4,4)*x2+A(5,4)*x2.^2+A(6,4)*x1.*x2; 

[FX4omin,LX4omin]=Z_TSis_F_L_MMTT38(X(4,:))   

f5=A(1,5)+A(2,5)*x1+A(3,5)*x1.^2+A(4,5)*x2+A(5,5)*x2.^2+A(6,5)*x1.*x2; 

[FX5omin,LX5omin]=Z_TSis_F_L_MMTT38(X(5,:)) %   

L1=(f1-FXmin(1,1))/d1;      % d1=37.1381 

L2=(f2-FXmin(2,2))/d2;      % d2=1.7000e+003 

L3=(f3-FXmin(3,3))/d3;      % d3=1.9029e+003 

L4=-1*(f4+FXmin(4,4))/d4;      % d4=-201.45 

L5=(f5+FXmin(5,5))/d5;      % d4=-201.45 

mesh(x1,x2,L1), hold on; 

mesh(x1,x2,L2), hold on; 

mesh(x1,x2,L3), hold on;           %'EdgeColor','black'), hold on; 

mesh(x1,x2,L4), hold on; 

%mesh(x1,x2,L5), hold on; 

%Kontur   x1max x3max x4min   x2mint     x1max 

x=[X(1,1) X(1,1) X(2,1) X(2,1) X(2,1)  X(3,1) X(3,1) X(3,1) X(4,1) X(4,1) X(4,1) X(1,1)]  

y=[X(1,2) X(1,2) X(2,2) X(2,2) X(2,2)  X(3,2) X(3,2) X(3,2) X(4,2) X(4,2) X(4,2) X(1,2)]  

z=[L(1,1) -0.2   -0.2   L(2,2)  -0.2   -0.2   L(3,3) -0.2   -0.2    L(4,4)  -0.2  -0.2] 

plot3(x,y,z,'k.--'); hold on; 

%Kontur -X1max L1(X1max) 

x=[X(1,1)  X(1,1)   X(1,1)];  

y=[X(1,2)  X(1,2)   X(1,2)];  

z=[-0.2  LX1omax(1)+0.005 1.0];    plot3(x,y,z,'r.-'); hold on; 

  text(X(1,1)-0.05,X(1,2),-0.16,'X ^*');hold on; 

  text(X(1,1)-0.05,X(1,2),-0.16-0.05,'   1','FontSize',7);hold on; 

  text(X(1,1),X(1,2),1.05,'\lambda (X ^*)');hold on; 

  text(X(1,1),X(1,2),1.05-0.05,'   1     1','FontSize',7');hold on;  %,'Color','y' 

 %Kontur -X2min L2(X2min)   FX2omax,LX2omax 

x=[X(2,1) X(2,1) X(2,1)];  

y=[X(2,2) X(2,2) X(2,2)];  

z=[-0.2   LX2omax(2) 1.0];     plot3(x,y,z,'r.-'); hold on; 

text(X(2,1)-0.02,X(2,2),-0.13,'X ^*');hold on; 

text(X(2,1)-0.02,X(2,2),-0.13-0.05,'   2','FontSize',7);hold on; 
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text(X(2,1),X(2,2),1.09,'\lambda (X ^*)');hold on;           %,'Color','y');hold on; 

text(X(2,1),X(2,2),1.09-0.05,'   2    2','FontSize',7);hold on; %,'Color','y');hold on; 

%Kontur -X3max L3(X3max); 

x=[X(3,1) X(3,1)];  

y=[X(3,2) X(3,2)];  

z=[-0.2      1.0];            plot3(x,y,z,'r.-'); hold on; 

text(X(3,1)-0.04,X(3,2),-0.15,'X ^*'); 

text(X(3,1)-0.04,X(3,2),-0.15-0.05,'   3','FontSize',7); 

text(X(3,1),X(3,2),1.05,'\lambda (X ^*)');hold on; 

text(X(3,1),X(3,2),1.05-0.05,'   3    3','FontSize',7);hold on; 

%Kontur -X4min L4(X4min)  

x=[X(4,1) X(4,1)];  

y=[X(4,2) X(4,2)];  

z=[-0.2   1.0];           plot3(x,y,z,'k.-'); hold on; 

text(X(4,1)-0.03,X(4,2),-0.2,'X ^*'); hold on; 

text(X(4,1)-0.03,X(4,2),-0.2-0.05,'   4','FontSize',7); hold on; 

text(X(4,1)+0.2,X(4,2),1.09,'\lambda  (X ^*)');hold on; 

text(X(4,1)+0.2,X(4,2),1.09-0.05,'   4     4','FontSize',7);hold on; 

%Kontur -Xo Lo lambda method Xo 

Xo         %Xo =  49.8463   51.5887   38.8002    0.3789 

Lo=-Lo     %Lo =0.3789   %LXo = 0.7332    0.3789    0.3789    0.7459 

%x=[Xo(1) Xo(1) Xo(1)  Xo(1)  Xo(1)  Xo(1)]  

%y=[Xo(2) Xo(2) Xo(2)  Xo(2)  Xo(2)  Xo(2)]  

%z=[0    LXo(2) LXo(3) LXo(1) LXo(4) LXo(5)+0.01]        

x=[Xo(1) Xo(1) Xo(1)  Xo(1)  Xo(1)]  

y=[Xo(2) Xo(2) Xo(2)  Xo(2)  Xo(2)]  

z=[-0.2 LXo(1) LXo(2) LXo(3) -LXo(4)]   %z=[-0.2  LXo(2) LXo(3) LXo(1) LXo(4) LXo(5)+0.01]        

plot3(x,y,z,'k.-');   hold on; 

plot3(Xo(1),Xo(2),Lo+0.01,'k.'); hold on;  

text(Xo(1)-0.04,Xo(2),-0.14,'X^o');hold on; 

text(Xo(1),Xo(2),Lo-0.05,'\lambda^o');hold on; 

text(Xo(1),Xo(2),Lo-0.18,'\lambda^o=\lambda (X^o)=\lambda (X^o)');hold on; 

text(Xo(1),Xo(2),Lo-0.18-0.05,'           1               3','FontSize',7);hold on; 

text(Xo(1), Xo(2),LXo(2)+0.08,'\lambda (X^o)');hold on; 

text(Xo(1), Xo(2),LXo(2)+0.08-0.05,'   2','FontSize',7);hold on; 

text(Xo(1), Xo(2),-LXo(4)+0.08,'\lambda (X^o)');hold on; 

text(Xo(1), Xo(2),-LXo(4)+0.08-0.05,'   4','FontSize',7);hold on; 

%Kontur Xo - LXq 

x=[X(1,1) Xo(1) X(2,1) Xo(1)  X(3,1)]  

y=[X(1,2) Xo(2) X(2,2) Xo(2)  X(3,2)]  

z=[-0.2  -0.2   -0.2  -0.2    -0.2]   %z=[-0.2  LXo(2) LXo(3) LXo(1) LXo(4) LXo(5)+0.01]        

plot3(x,y,z,'r.-');   hold on; 

disp('*** Построение точки с приоритетом q-го критер.***')% 

%Kontur Xq - LXq 

x=[Xq(1) Xq(1)];  
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y=[Xq(2) Xq(2)];  

z=[-0.2  LXq(q)]     

plot3(x,y,z,'k.-'); hold on; 

text(Xq(1),Xq(2)+0.1,-0.25,'X','Color','r');hold on; 

text(Xq(1),Xq(2)+0.1,-0.25-0.04,'   q','FontSize',6,'Color','r');hold on; 

text(Xq(1),Xq(2)-0.1,LXq(q)+0.1,'\lambda (X )');hold on; 

text(Xq(1),Xq(2)-0.1,LXq(q)+0.1-0.04,'    q    q','FontSize',6);hold on; 

xlabel('X1');hold on; 

ylabel('X2');hold on; 

zlabel('Lambda');hold on; 

title('\lambda-problem Vector Optimization. Машунин Ю.К.');hold on; 

axis([min(xxx) max(xxx) min(yyy) max(yyy)]);rotate3d; %grid off;  

 

disp('****************РИСУНОК 3 НЕЛИНЕЙНОЙ ЗАДАЧИ 2 КРИТЕР.**********');  

figure(3) 

[FX2omin,LX2omin]=Z_TSis_F_L_MMTT38(X(2,:)) 

[FX3omax,LX3omax]=Z_TSis_F_L_MMTT38(X(3,:)) 

L1=(f1-FXmin(1,1))/d1; 

L3=(f3-FXmin(3,3))/d3; 

mesh(x1,x2,L1), hold on; 

mesh(x1,x2,L3), hold on;           

x=[X(1,1) X(1,1) X(2,1) X(3,1) X(3,1) X(3,1) X(4,1) X(1,1)]  

y=[X(1,2) X(1,2) X(2,2) X(3,2) X(3,2) X(3,2) X(4,2) X(1,2)]  

z=[L(1,1) -0.2   -0.2   -0.2    L(3,3) -0.2  -0.2  -0.2] 

plot3(x,y,z,'k.--'); hold on; 

%Kontur   Lo x1max x3max x4min   x2mint     x1max 

x=[Xo(1) Xo(1)   Xo(1)]; 

y=[Xo(2) Xo(2)   Xo(2)]; 

z=[Lo    LXo(2) LXo(1)]; 

plot3(x,y,z,'k.-'); hold on;  

%Kontur -X1max LX1omax L1opt  

x=[X(1,1)  X(1,1)   X(1,1)];  

y=[X(1,2)  X(1,2)   X(1,2)];  

z=[-0.2  LX1omax(1)+0.005 1.0];     

plot3(x,y,z,'r.-'); hold on; 

  text(X(1,1)-0.05,X(1,2),-0.16,'X ^*');hold on; 

  text(X(1,1)-0.05,X(1,2),-0.16-0.05,'   1','FontSize',7);hold on; 

  text(X(1,1),X(1,2),1.05,'\lambda (X ^*)');hold on; 

  text(X(1,1),X(1,2),1.05-0.05,'   1     1','FontSize',7');hold on;  %,'Color','y' 

%Kontur -X3max L3(X3max); 

x=[X(3,1) X(3,1)];  

y=[X(3,2) X(3,2)];  

z=[-0.2      1.0];            plot3(x,y,z,'r.-'); hold on; 

text(X(3,1)-0.05,X(3,2),-0.16,'X ^*'); 

text(X(3,1)-0.05,X(3,2),-0.16-0.05,'   3','FontSize',7); 
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text(X(3,1),X(3,2),1.05,'\lambda (X ^*)');hold on; 

text(X(3,1),X(3,2),1.05-0.05,'   3    3','FontSize',7);hold on; 

text(X(2,1)-0.03,X(2,2),-0.12,'X ^*'); 

text(X(2,1)-0.03,X(2,2),-0.12-0.05,'   2','FontSize',7); 

x=[Xo(1) Xo(1) Xo(1)  Xo(1)  Xo(1)]  

y=[Xo(2) Xo(2) Xo(2)  Xo(2)  Xo(2)]  

z=[-0.2  LXo(1) LXo(2) LXo(3) -LXo(4)]   %z=[-0.2  LXo(2) LXo(3) LXo(1) LXo(4) LXo(5)+0.01]        

plot3(x,y,z,'k.-');   hold on; 

plot3(Xo(1),Xo(2),Lo+0.01,'k.'); hold on;  

text(Xo(1)-0.03,Xo(2),-0.15,'X^o');hold on; 

text(Xo(1),Xo(2),Lo-0.05,'\lambda^o');hold on; 

text(Xo(1),Xo(2),Lo-0.19,'\lambda^o=\lambda (X^o)=\lambda (X^o)');hold on; 

text(Xo(1),Xo(2),Lo-0.19-0.05,'           1               3','FontSize',7);hold on; 

text(Xo(1), Xo(2),-LXo(4)+0.08,'\lambda (X^o)');hold on; 

text(Xo(1), Xo(2),-LXo(4)+0.08-0.05,'   4','FontSize',7);hold on; 

 

text(Xo(1), Xo(2),LXo(2)+0.08,'\lambda (X^o)');hold on; 

text(Xo(1), Xo(2),LXo(2)+0.08-0.05,'   2','FontSize',7);hold on;  

text(Xo(1)-0.06, Xo(2),LXo(4)+0.05,'\lambda (X^o)');hold on; 

text(Xo(1)-0.06, Xo(2),LXo(4)+0.05-0.05,'   4','FontSize',7);hold on; 

x=[X(1,1) Xo(1) X(2,1) Xo(1)  X(3,1)]  

y=[X(1,2) Xo(2) X(2,2) Xo(2)  X(3,2)]  

z=[-0.2  -0.2   -0.2  -0.2    -0.2]   %z=[-0.2  LXo(2) LXo(3) LXo(1) LXo(4) LXo(5)+0.01]        

plot3(x,y,z,'r.-');   hold on; 

disp('*** Построение точки с приоритетом q-го критер.***')% 

%Kontur Xq - LXq 

x=[Xq(1) Xq(1)];  

y=[Xq(2) Xq(2)];  

z=[-0.2  LXq(q)]     

plot3(x,y,z,'k.-'); hold on; 

text(Xq(1),Xq(2)+0.1,-0.25,'X','Color','r');hold on; 

text(Xq(1),Xq(2)+0.1,-0.25-0.05,'    q','FontSize',6,'Color','r');hold on; 

text(Xq(1),Xq(2)-0.1,LXq(q)+0.1,'\lambda (X )');hold on; 

text(Xq(1),Xq(2)-0.1,LXq(q)+0.1-0.05,'    q     q','FontSize',6);hold on; 

xlabel('X1');hold on; 

ylabel('X2');hold on; 

zlabel('Lambda');hold on; 

title('\lambda-problem Vector Optimization two criterion \lambda1(X) and \lambda3(X) . Машунин Ю.К.');hold on; 

axis([min(xxx) max(xxx) min(yyy) max(yyy)]);rotate3d; %grid off;  

disp('****************РИСУНОК 4 НЕЛИНЕЙНОЙ ЗАДАЧИ F1 КРИТЕРИЙ**********');  

figure(4) 

xxx = [2:0.1:3.5]; yyy = [12:0.5:30];[x1,x2]=meshgrid(xxx,yyy); 

[FX1omax,LX1omax]=Z_TSis_F_L_MMTT38(X(1,:)) 

mesh(x1,x2,f1), hold on;           %'EdgeColor','black'), hold on; 

%Kontur   x1max x3max x4min   x2mint     x1max 
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x=[X(1,1) X(2,1) X(3,1) X(4,1) X(1,1)]  

y=[X(1,2) X(2,2) X(3,2) X(4,2) X(1,2)]  

z=[-0.2   -0.2   -0.2   -0.2   -0.2] 

plot3(x,y,z,'k.--'); hold on; 

x=[X(1,1) X(1,1)];                              % X1opt 

y=[X(1,2) X(1,2)];  

z=[-0.2  -FXopt(1,1)];            

plot3(x,y,z,'k.-'); hold on; 

text(X(1,1)+0.05,X(1,2),0.2,'X ^*'); 

text(X(1,1)+0.05,X(1,2),0.2-0.2,'   1','FontSize',7); 

text(X(1,1),X(1,2),-FXopt(1,1)+0.3,'f (X ^*)'); 

text(X(1,1),X(1,2),-FXopt(1,1)+0.3-0.2,' 1    1','FontSize',7); 

x=[Xmin(1,1) Xmin(1,1)];  

y=[Xmin(1,2) Xmin(1,2)];  

z=[-0.2      FXmin(1,1)];            

plot3(x,y,z,'k.-'); hold on; 

text(Xmin(1,1)-0.03,Xmin(1,2),0.1,'X ^{0}'); 

text(Xmin(1,1)-0.03,Xmin(1,2),0.1-0.2,'   1','FontSize',7); 

text(Xmin(1,1)-0.01,Xmin(1,2),FXmin(1,1)+0.3,'f (X ^{0})'); 

text(Xmin(1,1)-0.01,Xmin(1,2),FXmin(1,1)+0.3-0.2,' 1    1','FontSize',7); 

text(X(2,1),X(2,2),0.3,'X ^*');hold on;               % X2opt 

text(X(2,1),X(2,2),0.3-0.2,'   2','FontSize',7);hold on; 

text(X(3,1)-0.05,X(3,2),-0.1,'X ^*');                           % X3opt 

text(X(3,1)-0.05,X(3,2),-0.1-0.2,'   3','FontSize',7); 

text(X(4,1)-0.03,X(4,2),0.1,'X ^*'); hold on;                   % X4opt 

text(X(4,1)-0.03,X(4,2),0.1-0.2,'   4','FontSize',7); hold on; 

x=[Xo(1) Xo(1)];  

y=[Xo(2) Xo(2)];  

z=[-0.2 -FXo(1)];            

plot3(x,y,z,'k.-'); hold on; 

text(Xo(1)+0.08,Xo(2),0.2,'X^o');hold on; 

text(Xo(1)+0.1,Xo(2),-FXo(1)+0.7,'f (X ^o)');hold on; 

text(Xo(1)+0.1,Xo(2),-FXo(1)+0.7-0.2,' 1','FontSize',7);hold on; 

x=[X(1,1) Xo(1) X(2,1) Xo(1)  X(3,1)]  

y=[X(1,2) Xo(2) X(2,2) Xo(2)  X(3,2)]  

z=[-0.2  -0.2   -0.2  -0.2    -0.2]   %z=[-0.2  LXo(2) LXo(3) LXo(1) LXo(4) LXo(5)+0.01]        

plot3(x,y,z,'r.-');   hold on; 

disp('*** Построение точки с приоритетом q-го критер.***')% 

%Kontur Xq - LXq 

x=[Xq(1) Xq(1)];  

y=[Xq(2) Xq(2)];  

z=[-0.2  -FXq(1)]     

plot3(x,y,z,'k.-'); hold on; 

text(Xq(1),Xq(2)+0.1,-0.4,'X','Color','r');hold on; 

text(Xq(1),Xq(2)+0.1,-0.4-0.06,'   q','FontSize',7,'Color','r');hold on; 
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text(Xq(1)+0.03,Xq(2)-0.01,-FXq(1)+0.4,'f (X  )','Color','r');hold on; 

text(Xq(1)+0.03,Xq(2)-0.01,-FXq(1)+0.4-0.06,' 1     q','FontSize',7,'Color','r');hold on; 

%Zagolovok 

xlabel('X1');hold on; 

ylabel('X2');hold on; 

zlabel('F1');hold on; 

title('Function f1(X) in Vector Optimization problem. Машунин Ю.К.');hold on; 

axis([min(xxx) max(xxx) min(yyy) max(yyy)]);rotate3d; %grid off;  

disp('****************РИСУНОК 5 НЕЛИНЕЙНОЙ ЗАДАЧИ F2 КРИТЕРИЙ**********');  

figure(5) 

xxx = [2:0.1:3.5]; yyy = [12:0.5:30];[x1,x2]=meshgrid(xxx,yyy); 

[FX3omax,LX3omax]=Z_TSis_F_L_MMTT38(X(2,:)) 

mesh(x1,x2,f2), hold on;           %'EdgeColor','black'), hold on; 

%Kontur   x1max x3max x4min   x2mint     x1max 

x=[X(1,1) X(2,1) X(3,1) X(4,1) X(1,1)]  

y=[X(1,2) X(2,2) X(3,2) X(4,2) X(1,2)]  

z=[-0.2   -0.2   -0.2   -0.2   -0.2] 

plot3(x,y,z,'k.--'); hold on; 

text(X(1,1)-0.15,X(1,2),2.5,'X ^*');hold on;                       % X1opt 

text(X(1,1)-0.15,X(1,2),2.5-2.9,'   1','FontSize',7);hold on; 

x=[X(2,1) X(2,1)];                                             % X2opt 

y=[X(2,2) X(2,2)];  

z=[-0.2   -FXopt(2,2)];            

plot3(x,y,z,'k.-'); hold on; 

text(X(2,1),X(2,2),-4,'X ^*'); 

text(X(2,1),X(2,2),-4-2.6,'   2','FontSize',7); 

text(X(2,1)-0.05,X(2,2)-1,-FXopt(2,2)+3.5,'f (X ^*)'); 

text(X(2,1)-0.05,X(2,2)-1,-FXopt(2,2)+3.5-2.6,' 2     2','FontSize',7); 

x=[Xmin(2,1) Xmin(2,1)];  

y=[Xmin(2,2) Xmin(2,2)];  

z=[0         FXmin(2,2)];            

plot3(x,y,z,'k.-'); hold on; 

text(Xmin(2,1)+0.08,Xmin(2,2),-1.6,'X ^{0}'); 

text(Xmin(2,1)+0.08,Xmin(2,2),-1.6-2.6,'   2','FontSize',7); 

text(Xmin(2,1)-0.05,Xmin(2,2)-1,FXmin(2,2)+1.4,'f (X ^{0})'); 

text(Xmin(2,1)-0.05,Xmin(2,2)-1,FXmin(2,2)+1.4-2.6,' 2     2','FontSize',7); 

text(X(3,1)-0.05,X(3,2),3.5,'X ^*'); 

text(X(3,1)-0.05,X(3,2),3.5-2.5,'   3','FontSize',7); 

text(X(4,1)-0.05,X(4,2),-2.50,'X ^*'); hold on;                 % X4opt 

text(X(4,1)-0.05,X(4,2),-2.50-2.6,'   4','FontSize',7); hold on; 

x=[Xo(1) Xo(1)];  

y=[Xo(2) Xo(2)];  

z=[0    -FXo(2)];            

plot3(x,y,z,'k.-'); hold on; 

text(Xo(1),Xo(2),-3,'X^o');hold on; 
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text(Xo(1),Xo(2),-FXo(2)+3,'f (X ^o)');             %,'Color','y');hold on; 

text(Xo(1),Xo(2),-FXo(2)+3-2.6,' 2','FontSize',7);    %,'Color','y');hold on; 

x=[X(1,1) Xo(1) X(2,1) Xo(1)  X(3,1)]  

y=[X(1,2) Xo(2) X(2,2) Xo(2)  X(3,2)]  

z=[-0.2  -0.2   -0.2  -0.2    -0.2]   %z=[-0.2  LXo(2) LXo(3) LXo(1) LXo(4) LXo(5)+0.01]        

plot3(x,y,z,'r.-');   hold on; 

disp('*** Построение точки с приоритетом q-го критер.***')% 

%Kontur Xq - LXq 

x=[Xq(1) Xq(1)];  

y=[Xq(2) Xq(2)];  

z=[-0.2  -FXq(2)]     

plot3(x,y,z,'k.-'); hold on; 

text(Xq(1),Xq(2),-4,'X','Color','r');hold on; 

text(Xq(1),Xq(2),-4-2.6,'    q','FontSize',6,'Color','r');hold on; 

text(Xq(1),Xq(2),-FXq(2)+8,'f  (X  )','Color','r');hold on; 

text(Xq(1),Xq(2),-FXq(2)+8-2.6,'  2     q','FontSize',7,'Color','r');hold on; 

%Zagolovok 

xlabel('X1');hold on; 

ylabel('X2');hold on; 

zlabel('F2');hold on; 

title('Function f2(X) in Vector Optimization problem. Машунин Ю.К.');hold on; 

axis([min(xxx) max(xxx) min(yyy) max(yyy)]);rotate3d; %grid off;  

disp('****************РИСУНОК 6 НЕЛИНЕЙНОЙ ЗАДАЧИ 3 КРИТЕРИЙ**********');  

figure(6) 

xxx = [2:0.1:3.5]; yyy = [12:0.5:30];[x1,x2]=meshgrid(xxx,yyy); 

[FX3omax,LX3omax]=Z_TSis_F_L_MMTT38(X(3,:)) 

mesh(x1,x2,f3), hold on;           %'EdgeColor','black'), hold on; 

%Kontur   x1max x3max x4min   x2mint     x1max 

x=[X(1,1) X(2,1) X(3,1) X(4,1) X(1,1)]  

y=[X(1,2) X(2,2) X(3,2) X(4,2) X(1,2)]  

z=[-0.2   -0.2   -0.2   -0.2   -0.2] 

plot3(x,y,z,'k.--'); hold on; 

text(X(1,1),X(1,2),-0.15,'X ^*');hold on;                       % X1opt 

text(X(1,1),X(1,2),-0.15-0.03,'   1','FontSize',7);hold on; 

text(X(2,1),X(2,2)+1,-0.12,'X ^*');hold on;                   % X2opt 

text(X(2,1),X(2,2)+1,-0.12-0.03,'   2','FontSize',7);hold on; 

x=[X(3,1) X(3,1)];                                            % X3opt 

y=[X(3,2) X(3,2)];  

z=[-0.2  -FXopt(3,3)];            

plot3(x,y,z,'k.-'); hold on; 

text(X(3,1)-0.04,X(3,2),-0.15,'X ^*'); 

text(X(3,1)-0.04,X(3,2),-0.15-0.03,'   3','FontSize',7); 

text(X(3,1)-0.04,X(3,2),-FXopt(3,3)+0.05,'f (X ^*)'); 

text(X(3,1)-0.04,X(3,2),-FXopt(3,3)+0.05-0.03,' 3     3','FontSize',7); 

x=[Xmin(3,1) Xmin(3,1)];  
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y=[Xmin(3,2) Xmin(3,2)];  

z=[-0.2      FXmin(3,3)];            

plot3(x,y,z,'k.-'); hold on; 

text(Xmin(3,1),Xmin(3,2),-0.15,'X ^{0}'); 

text(Xmin(3,1),Xmin(3,2),-0.15-0.03,'   3','FontSize',7); 

text(Xmin(3,1)+0.1,Xmin(3,2),FXmin(3,3)+0.1,'f (X ^{0})')                 %,'Color','y'); 

text(Xmin(3,1)+0.1,Xmin(3,2),FXmin(3,3)+0.1-0.03,' 3     3','FontSize',7)  %,'Color','y'); 

x=[Xo(1) Xo(1)];  

y=[Xo(2) Xo(2)];  

z=[-0.2    -FXo(3)];            

plot3(x,y,z,'k.-'); hold on; 

text(Xo(1)-0.03,Xo(2),-0.18,'X^o');hold on; 

text(Xo(1)+0.17,Xo(2),-FXo(3),'f (X ^o)');hold on; 

text(Xo(1)+0.17,Xo(2),-FXo(3)-0.03,' 3','FontSize',7);hold on; 

x=[X(1,1) Xo(1) X(2,1) Xo(1)  X(3,1)]  

y=[X(1,2) Xo(2) X(2,2) Xo(2)  X(3,2)]  

z=[-0.2  -0.2   -0.2  -0.2    -0.2]   %z=[-0.2  LXo(2) LXo(3) LXo(1) LXo(4) LXo(5)+0.01]        

plot3(x,y,z,'r.-');   hold on; 

disp('*** Построение точки с приоритетом q-го критер.***')% 

%Kontur Xq - LXq 

x=[Xq(1) Xq(1)];  

y=[Xq(2) Xq(2)];  

z=[-0.2  -FXq(3)]     

plot3(x,y,z,'k.-'); hold on; 

text(Xq(1),Xq(2)+0.1,-0.2,'X','Color','r');hold on; 

text(Xq(1),Xq(2)+0.1,-0.2-0.03,'   q','FontSize',7,'Color','r');hold on; 

text(Xq(1),Xq(2)-0.1,-FXq(3)+0.06,'f  (X  )');hold on; 

text(Xq(1),Xq(2)-0.1,-FXq(3)+0.06-0.03,'  3     q','FontSize',7);hold on; 

%Zagolovok 

xlabel('X1');hold on; 

ylabel('X2');hold on; 

zlabel('F3');hold on; 

title('Function f3(X) in Vector Optimization problem. Машунин Ю.К.');hold on; 

axis([min(xxx) max(xxx) min(yyy) max(yyy)]);rotate3d; %grid off;  

disp('****************РИСУНОК 7 НЕЛИНЕЙНОЙ ЗАДАЧИ 4 КРИТЕРИЙ**********');  

figure(7) 

xxx = [2:0.1:3.5]; yyy = [12:0.5:30];[x1,x2]=meshgrid(xxx,yyy); 

[FX4omax,LX4omax]=Z_TSis_F_L_MMTT38(X(4,:)) 

mesh(x1,x2,f4), hold on;           %'EdgeColor','black'), hold on; 

%Kontur   x1max x3max x4min   x2mint     x1max 

x=[X(1,1) X(2,1) X(3,1) X(4,1) X(1,1)]  

y=[X(1,2) X(2,2) X(3,2) X(4,2) X(1,2)]  

z=[-0.2   -0.2   -0.2   -0.2   -0.2] 

plot3(x,y,z,'k.--'); hold on; 

text(X(1,1),X(1,2),-0.2,'X ^*');hold on;                       % X1opt 
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text(X(1,1),X(1,2),-0.2-0.05,'   1','FontSize',7);hold on; 

text(X(2,1),X(2,2),-0.2,'X ^*');hold on;                   % X2opt 

text(X(2,1),X(2,2),-0.2-0.05,'   2','FontSize',7);hold on; 

text(X(3,1)-1,X(3,2),-0.15,'X ^*'); 

text(X(3,1)-1,X(3,2),-0.15-0.05,'   3','FontSize',7); 

x=[X(4,1) X(4,1)];                                            % X3opt 

y=[X(4,2) X(4,2)];  

z=[-0.2   FXopt(4,4)];            

plot3(x,y,z,'k.-'); hold on; 

text(X(4,1)-0.04,X(4,2),-0.15,'X ^*'); 

text(X(4,1)-0.04,X(4,2),-0.15-0.05,'   4','FontSize',7); 

text(X(4,1)-0.04,X(4,2),FXopt(4,4),'f (X ^*)'); 

text(X(4,1)-0.04,X(4,2),FXopt(4,4)-0.05,' 4    4','FontSize',7); 

x=[Xmin(4,1) Xmin(4,1)];  

y=[Xmin(4,2) Xmin(4,2)];  

z=[-0.2      -FXmin(4,4)];            

plot3(x,y,z,'k.-'); hold on; 

text(Xmin(4,1),Xmin(4,2),-0.13,'X ^{0}'); 

text(Xmin(4,1),Xmin(4,2),-0.13-0.05,'   4','FontSize',7); 

text(Xmin(4,1),Xmin(4,2),-FXmin(4,4)+0.1,'f (X ^{0})')                 %,'Color','y'); 

text(Xmin(4,1),Xmin(4,2),-FXmin(4,4)+0.1-0.06,' 4    4','FontSize',7)  %,'Color','y'); 

x=[Xo(1) Xo(1)];  

y=[Xo(2) Xo(2)];  

z=[-0.2  FXo(4)];            

plot3(x,y,z,'k.-'); hold on; 

text(Xo(1),Xo(2),-0.3,'X^o');hold on; 

text(Xo(1),Xo(2),FXo(4)+0.05,'f (X ^o)');hold on; 

text(Xo(1),Xo(2),FXo(4)+0.05-0.05,' 4','FontSize',7);hold on; 

x=[X(1,1) Xo(1) X(2,1) Xo(1)  X(3,1) Xo(1)  X(3,1)]  

y=[X(1,2) Xo(2) X(2,2) Xo(2)  X(3,2) Xo(2)  X(3,2)]  

z=[-0.2  -0.2   -0.2  -0.2    -0.2  -0.2    -0.2]    

plot3(x,y,z,'r.-');   hold on; 

disp('*** Построение точки с приоритетом q-го критер.***')% 

%Kontur Xq - LXq 

x=[Xq(1) Xq(1)];  

y=[Xq(2) Xq(2)];  

z=[-0.2  FXq(4)]     

plot3(x,y,z,'k.-'); hold on; 

text(Xq(1),Xq(2),-0.28,'X','Color','r');hold on; 

text(Xq(1),Xq(2),-0.28-0.05,'   q','FontSize',7,'Color','r');hold on; 

text(Xq(1),Xq(2)-2,FXq(4)+0.1,'f  (X  )','Color','r');hold on; 

text(Xq(1),Xq(2)-2,FXq(4)+0.1-0.05,'  4     q','FontSize',7,'Color','r');hold on; 

%Zagolovok 

xlabel('X1');hold on; 

ylabel('X2');hold on; 
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zlabel('F4');hold on; 

title('Function f4(X) in Vector Optimization problem. Машунин Ю.К.');hold on; 

axis([min(xxx) max(xxx) min(yyy) max(yyy)]);rotate3d; %grid off;  

% END 

% Программы 

% 1.[Программа "Расчет ограничений L-задачи"] файл: Z_TehnSist_F_L 

function [FXo,LXo]= Z_TehnSist_F_L_MMTT38(Xo) 

global k Zn Sk Pq FXmin d1 d2 d3 d4 d5 

for j=1:5 

   k=j; 

   Zn=Sk(j); 

   fXo=[Z_TS_Krit1max_MMTT38(Xo(1:2))];  

   FXo(j)=fXo; 

  end 

FXo;  

LXo=[(-FXo(1)-FXmin(1,1))/d1 (-FXo(2)-FXmin(2,2))/d2 (-FXo(3)-FXmin(3,3))/d3 (FXo(4)+FXmin(4,4))/d4 

(FXo(5)+FXmin(5,5))/d5]; 

% 2. [Программа "Расчет критер. L-задачи"] файл: Z_TehnSist_4Krit_L 

function [f,G] = Z_TS_4Krit_L_MMTT38(x) 

f=-x(3); 

G=[0; 0; -1]; 

% 3.       [Программа "Расчет ограничений L-задачи"] файл: Z_TS_12_LConst_3Kr 

function [c,ceq,DC,DCeq]=Z_TS_12_LConst_3Kr_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 

c(1)=-Pq(1)*(A(1,1)+A(2,1)*x(1)+A(3,1)*x(1)^2+A(4,1)*x(2)+A(5,1)*x(2)^2+A(6,1)*x(1)*x(2)-

FXmin(1,1))/d1+x(3); 

c(2)=-Pq(2)*(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2)-

FXmin(2,2))/d2+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(1)*(A(2,1)+A(3,1)*2*x(1)+A(6,1)*x(2))/d1, -Pq(2)*(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2))/d2; 

    -Pq(1)*(A(4,1)+A(5,1)*2*x(2)+A(6,1)*x(1))/d1, -Pq(2)*(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1))/d2; 

         1.0,                  1.0];    %,               0,                       0]; 

 ceq=[]; DCeq=[]; 

% 4.       [Программа "Расчет ограничений L-задачи"] файл: Z_TS_12_LConst_3Kr 

function [c,ceq,DC,DCeq]= Z_TS_12_LConst_3Kr_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 

c(1)=-Pq(1)*(A(1,1)+A(2,1)*x(1)+A(3,1)*x(1)^2+A(4,1)*x(2)+A(5,1)*x(2)^2+A(6,1)*x(1)*x(2)-

FXmin(1,1))/d1+x(3); 

c(2)=-Pq(2)*(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2)-

FXmin(2,2))/d2+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(1)*(A(2,1)+A(3,1)*2*x(1)+A(6,1)*x(2))/d1, -Pq(2)*(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2))/d2; 

    -Pq(1)*(A(4,1)+A(5,1)*2*x(2)+A(6,1)*x(1))/d1, -Pq(2)*(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1))/d2; 
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     1.0,     1.0];    %,   0,     0]; 

 ceq=[]; DCeq=[]; 

% 5.      [Программа "Расчет ограничений L-задачи"] файл: Z2_TS_13_LConst_3Kr 

function [c,ceq,DC,DCeq]= Z_TS_13_LConst_3Kr_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 

c(1)=-Pq(1)*(A(1,1)+A(2,1)*x(1)+A(3,1)*x(1)^2+A(4,1)*x(2)+A(5,1)*x(2)^2+A(6,1)*x(1)*x(2)-

FXmin(1,1))/d1+x(3); 

c(2)=-Pq(3)*(A(1,3)+A(2,3)*x(1)+A(3,3)*x(1)^2+A(4,3)*x(2)+A(5,3)*x(2)^2+A(6,3)*x(1)*x(2)-

FXmin(3,3))/d3+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(1)*(A(2,1)+A(3,1)*2*x(1)+A(6,1)*x(2))/d1, -Pq(3)*(A(2,3)+A(3,3)*2*x(1)+A(6,3)*x(2))/d3;  

    -Pq(1)*(A(4,1)+A(5,1)*2*x(2)+A(6,1)*x(1))/d1, -Pq(3)*(A(4,3)+A(5,3)*2*x(2)+A(6,3)*x(1))/d3; 

     1.0,                  1.0];    %,                              0,                             0]; 

ceq=[]; DCeq=[]; 

6. 

% 6.     [Программа "Расчет ограничений L-задачи"] файл: Z2_TehnSist_13_LConst 

function [c,ceq,DC,DCeq]= Z_TS_13_LConst_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 

c(1)=-Pq(1)*(A(1,1)+A(2,1)*x(1)+A(3,1)*x(1)^2+A(4,1)*x(2)+A(5,1)*x(2)^2+A(6,1)*x(1)*x(2)-

FXmin(1,1))/d1+x(3); 

c(2)=-Pq(3)*(A(1,3)+A(2,3)*x(1)+A(3,3)*x(1)^2+A(4,3)*x(2)+A(5,3)*x(2)^2+A(6,3)*x(1)*x(2)-

FXmin(3,3))/d3+x(3); 

c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(1)*(A(2,1)+A(3,1)*2*x(1)+A(6,1)*x(2))/d1, -Pq(3)*(A(2,3)+A(3,3)*2*x(1)+A(6,3)*x(2))/d3,... 

                       (A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)), -(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)); 

    -Pq(1)*(A(4,1)+A(5,1)*2*x(2)+A(6,1)*x(1))/d1, -Pq(3)*(A(4,3)+A(5,3)*2*x(2)+A(6,3)*x(1))/d3,... 

                       (A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)), -(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)); 

     1.0,                  1.0,                              0,                             0]; 

ceq=[]; DCeq=[]; 

7. 

%  7.      [Программа "Расчет ограничений L-задачи"] файл: Z_TehnSist_23_LConst 

function [c,ceq,DC,DCeq]= Z_TS_23_LConst_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 

c(1)=-Pq(3)*(A(1,3)+A(2,3)*x(1)+A(3,3)*x(1)^2+A(4,3)*x(2)+A(5,3)*x(2)^2+A(6,3)*x(1)*x(2)-

FXmin(3,3))/d3+x(3); 

c(2)=-Pq(2)*(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2)-

FXmin(2,2))/d2+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(3)*(A(2,3)+A(3,3)*2*x(1)+A(6,3)*x(2))/d3, -Pq(2)*(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2))/d3;    %,... 

%          (A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)), -(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)); 

    -Pq(3)*(A(4,3)+A(5,3)*2*x(2)+A(6,3)*x(1))/d3, -Pq(2)*(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1))/d2;    %,... 

%                       (A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)), -(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)); 
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     1.0,                                          1.0];  %,              0,                             0]; 

 ceq=[]; DCeq=[]; 

8. 

%  8.      [Программа "Расчет ограничений L-задачи"] файл: Z_TehnSist_32_LConst 

function [c,ceq,DC,DCeq]= Z_TS_32_LConst_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 d5 

c(1)=-

Pq(2)*(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2)+FXmin(2,2))/d2+x(3); 

c(2)=-

Pq(3)*(A(1,3)+A(2,3)*x(1)+A(3,3)*x(1)^2+A(4,3)*x(2)+A(5,3)*x(2)^2+A(6,3)*x(1)*x(2)+FXmin(3,3))/d3+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800;  

DC=[-Pq(2)*(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2))/d2, -Pq(3)*(A(2,3)+A(3,3)*2*x(1)+A(6,3)*x(2))/d3; %,  ...  

    -Pq(2)*(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1))/d2, -Pq(3)*(A(4,3)+A(5,3)*2*x(2)+A(6,3)*x(1))/d3; %, ...   

     1.0,                  1.0];  %,                    0,                0]; 

ceq=[]; DCeq=[]; 

9. 

% 9.     [Программа "Расчет ограничений L-задачи"] файл: Z_TehnSist_34_LConst 

function [c,ceq,DC,DCeq]= Z_TS_34_LConst_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 

c(1)=-

Pq(4)*(A(1,4)+A(2,4)*x(1)+A(3,4)*x(1)^2+A(4,4)*x(2)+A(5,4)*x(2)^2+A(6,4)*x(1)*x(2)+FXmin(4,4))/d4+x(3); 

c(2)=-

Pq(3)*(A(1,3)+A(2,3)*x(1)+A(3,3)*x(1)^2+A(4,3)*x(2)+A(5,3)*x(2)^2+A(6,3)*x(1)*x(2)+FXmin(3,3))/d3+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(4)*(A(2,4)+A(3,4)*2*x(1)+A(6,4)*x(2))/d4, -Pq(3)*(A(2,3)+A(3,3)*2*x(1)+A(6,3)*x(2))/d3; %,  ... 

(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)), -(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)); 

    -Pq(4)*(A(4,4)+A(5,4)*2*x(2)+A(6,4)*x(1))/d4, -Pq(3)*(A(4,3)+A(5,3)*2*x(2)+A(6,3)*x(1))/d3; %, ...  

(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)), -(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)); 

     1.0,                  1.0];  %,                              0,                             0]; 

ceq=[]; DCeq=[]; 

10. 

%        [Программа "Расчет ограничений L-задачи"] файл: Z_TehnSist_35_LConst 

function [c,ceq,DC,DCeq]= Z_TS_35_LConst_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 d5 

c(1)=-

Pq(5)*(A(1,5)+A(2,5)*x(1)+A(3,5)*x(1)^2+A(4,5)*x(2)+A(5,5)*x(2)^2+A(6,5)*x(1)*x(2)+FXmin(5,5))/d5+x(3); 

c(2)=-

Pq(3)*(A(1,3)+A(2,3)*x(1)+A(3,3)*x(1)^2+A(4,3)*x(2)+A(5,3)*x(2)^2+A(6,3)*x(1)*x(2)+FXmin(3,3))/d3+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(5)*(A(2,5)+A(3,5)*2*x(1)+A(6,5)*x(2))/d5, -Pq(3)*(A(2,3)+A(3,3)*2*x(1)+A(6,3)*x(2))/d3; %,  ... 

(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)), -(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)); 
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    -Pq(5)*(A(4,5)+A(5,5)*2*x(2)+A(6,5)*x(1))/d5, -Pq(3)*(A(4,3)+A(5,3)*2*x(2)+A(6,3)*x(1))/d3; %, ...  

(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)), -(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)); 

     1.0,                  1.0];  %,                              0,                             0]; 

ceq=[]; DCeq=[]; 

11. 

%        [Программа "Расчет ограничений L-задачи"] файл: Z2_TehnSist_42_LConst 

function [c,ceq,DC,DCeq]= Z_TS_42_LConst_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 

c(1)=-

Pq(4)*(A(1,4)+A(2,4)*x(1)+A(3,4)*x(1)^2+A(4,4)*x(2)+A(5,4)*x(2)^2+A(6,4)*x(1)*x(2)+FXmin(4,4))/d4+x(3); 

c(2)=-Pq(2)*(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2)-

FXmin(2,2))/d2+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(4)*(A(2,4)+A(3,4)*2*x(1)+A(6,4)*x(2))/d4, -Pq(2)*(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2))/d2; %, ...                               

(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)), -(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)); 

    -Pq(4)*(A(4,4)+A(5,4)*2*x(2)+A(6,4)*x(1))/d4, -Pq(2)*(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1))/d2; %, ...     

(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)), -(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)); 

     1.0,                  1.0 ]; %,                              0,                             0]; 

ceq=[]; DCeq=[]; 

12. 

function [c,ceq,DC,DCeq]= Z_TS_54_LConst_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 d5 

c(1)=-

Pq(5)*(A(1,5)+A(2,5)*x(1)+A(3,5)*x(1)^2+A(4,5)*x(2)+A(5,5)*x(2)^2+A(6,5)*x(1)*x(2)+FXmin(5,5))/d5+x(3); 

c(2)=-

Pq(4)*(A(1,4)+A(2,4)*x(1)+A(3,4)*x(1)^2+A(4,4)*x(2)+A(5,4)*x(2)^2+A(6,4)*x(1)*x(2)+FXmin(4,4))/d4+x(3); 

%c(3)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(4)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

 

DC=[-Pq(5)*(A(2,5)+A(3,5)*2*x(1)+A(6,5)*x(2))/d5, -Pq(4)*(A(2,4)+A(3,4)*2*x(1)+A(6,4)*x(2))/d4; %,  ... 

(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)), -(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)); 

    -Pq(5)*(A(4,5)+A(5,5)*2*x(2)+A(6,5)*x(1))/d5, -Pq(4)*(A(4,4)+A(5,4)*2*x(2)+A(6,4)*x(1))/d4; %, ...  

(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)), -(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)); 

     1.0,                  1.0];  %,                              0,                             0]; 

ceq=[]; DCeq=[]; 

13. 

% 13.       [Программа "Расчет ограничений L-задачи"] файл: Z_TehnSist_F_L 

function [FXo,LXo]= Z_TS_F_L_MMTT38(Xo) 

global k Zn Sk Pq FXmin d1 d2 d3 d4 

for j=1:4 

   k=j; 

   Zn=Sk(j); 

   fXo=[Z_TehnSist_Krit1max(Xo(1:2))];  

   FXo(j)=fXo; 
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  end 

FXo;  

LXo=[(-FXo(1)-FXmin(1,1))/d1 (-FXo(2)-FXmin(2,2))/d2 (-FXo(3)-FXmin(3,3))/d3 (FXo(4)+FXmin(4,4))/d4]; 

14.  

%  14.  [Программа "Расчет 1 критер. - max"] файл: Z_TehnSist_Krit1max 

 function [f,G] = Z_TS_Krit1max_MMTT38(x) 

global A Zn k  %A - матрица коэффициентов,Zn -знак у функции и производной   

 f=Zn*(A(1,k)+A(2,k)*x(1)+A(3,k)*x(1).^2+A(4,k)*x(2)+A(5,k)*x(2).^2+A(6,k)*x(1).*x(2)); 

G=[Zn*(A(2,k)+A(3,k)*2*x(1)+A(6,k)*x(2)) Zn*(A(4,k)+A(5,k)*2*x(2)+A(6,k)*x(1))]; 

15. 

%  15.      [Программа "Расчет ограничений L-задачи"] файл: Z2_TehnSist_LConst1 

function [c,ceq,DC,DCeq]= Z_TS_LConstV2_v1_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 

c(1)=-

Pq(1)*(A(1,1)+A(2,1)*x(1)+A(3,1)*x(1)^2+A(4,1)*x(2)+A(5,1)*x(2)^2+A(6,1)*x(1)*x(2)+FXmin(1,1))/d1+x(3); 

c(2)=-

Pq(2)*(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2)+FXmin(2,2))/d2+x(3); 

c(3)=-

Pq(3)*(A(1,3)+A(2,3)*x(1)+A(3,3)*x(1)^2+A(4,3)*x(2)+A(5,3)*x(2)^2+A(6,3)*x(1)*x(2)+FXmin(3,3))/d3+x(3); 

c(4)=-

Pq(4)*(A(1,4)+A(2,4)*x(1)+A(3,4)*x(1)^2+A(4,4)*x(2)+A(5,4)*x(2)^2+A(6,4)*x(1)*x(2)+FXmin(4,4))/d4+x(3); 

%c(5)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(6)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(1)*(A(2,1)+A(3,1)*2*x(1)+A(6,1)*x(2))/d1, -Pq(2)*(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2))/d2, -

Pq(3)*(A(2,3)+A(3,3)*2*x(1)+A(6,3)*x(2))/d3,... 

    -Pq(4)*(A(2,4)+A(3,4)*2*x(1)+A(6,4)*x(2))/d4;     %, (A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)), -

(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)); 

    -Pq(1)*(A(4,1)+A(5,1)*2*x(2)+A(6,1)*x(1))/d1, -Pq(2)*(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1))/d2, -

Pq(3)*(A(4,3)+A(5,3)*2*x(2)+A(6,3)*x(1))/d3,... 

    -Pq(4)*(A(4,4)+A(5,4)*2*x(2)+A(6,4)*x(1))/d4;    %, (A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)), -

(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)); 

     1.0,                                          1.0,                                           1.0,       ... 

         1.0];                                          %,                                           0,          0]; 

%d1=-FXopt(1,1)-FXmin(1,1)      % d1=41.54 

%d2=-FXopt(2,2)-FXmin(2,2)      % d2=1.7000e+003 

%d3=-FXopt(3,3)-FXmin(3,3)      % d3=1.9029e+003 

%d4= FXopt(4,4)+FXmin(4,4)      % d4=-201.45 

% DC=[(A(2,2)+2*A(3,2)*x(1)+A(6,2)*x(2)), (A(4,2)+2*A(5,2)*x(2)+A(6,2)*x(1)); 

%    -(A(2,2)+2*A(3,2)*x(1)+A(6,2)*x(2)),-(A(4,2)+2*A(5,2)*x(2)+A(6,2)*x(1))]; 

ceq=[]; DCeq=[]; 

16. 

% 16.       [Программа "Расчет ограничений L-задачи"] файл: Z2_TehnSist_LConst1 

function [c,ceq,DC,DCeq]= Z_TS_LConstV2_v2_MMTT38(x) 

global A Pq FXmin d1 d2 d3 d4 
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c(1)=-Pq(1)*(A(1,1)+A(2,1)*x(1)+A(3,1)*x(1)^2+A(4,1)*x(2)+A(5,1)*x(2)^2+A(6,1)*x(1)*x(2)-

FXmin(1,1))/d1+x(3); 

c(2)=-Pq(2)*(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2)-

FXmin(2,2))/d2+x(3); 

c(3)=-Pq(3)*(A(1,3)+A(2,3)*x(1)+A(3,3)*x(1)^2+A(4,3)*x(2)+A(5,3)*x(2)^2+A(6,3)*x(1)*x(2)-

FXmin(3,3))/d3+x(3); 

c(4)=-Pq(4)*(A(1,4)+A(2,4)*x(1)+A(3,4)*x(1)^2+A(4,4)*x(2)+A(5,4)*x(2)^2+A(6,4)*x(1)*x(2)-

FXmin(4,4))/d4+x(3); 

%c(5)=       (A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))-5500; 

%c(6)=      -(A(1,2)+A(2,2)*x(1)+A(3,2)*x(1)^2+A(4,2)*x(2)+A(5,2)*x(2)^2+A(6,2)*x(1)*x(2))+3800; 

DC=[-Pq(1)*(A(2,1)+A(3,1)*2*x(1)+A(6,1)*x(2))/d1, -Pq(2)*(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2))/d2, -

Pq(3)*(A(2,3)+A(3,3)*2*x(1)+A(6,3)*x(2))/d3,... 

     -Pq(4)*(A(2,4)+A(3,4)*2*x(1)+A(6,4)*x(2))/d4;     %, (A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)), -

(A(2,2)+A(3,2)*2*x(1)+A(6,2)*x(2)); 

    -Pq(1)*(A(4,1)+A(5,1)*2*x(2)+A(6,1)*x(1))/d1, -Pq(2)*(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1))/d2, -

Pq(3)*(A(4,3)+A(5,3)*2*x(2)+A(6,3)*x(1))/d3,... 

      -Pq(4)*(A(4,4)+A(5,4)*2*x(2)+A(6,4)*x(1))/d4;    %, (A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)), -

(A(4,2)+A(5,2)*2*x(2)+A(6,2)*x(1)); 

     1.0,                                          1.0,                                           1.0,                                       

... 

         1.0];                                          %,                                           0,                                 

0]; 

%d1=-FXopt(1,1)-FXmin(1,1)      % d1=41.54 

%d2=-FXopt(2,2)-FXmin(2,2)      % d2=1.7000e+003 

%d3=-FXopt(3,3)-FXmin(3,3)      % d3=1.9029e+003 

%d4= FXopt(4,4)+FXmin(4,4)      % d4=-201.45  

 % DC=[(A(2,2)+2*A(3,2)*x(1)+A(6,2)*x(2)), (A(4,2)+2*A(5,2)*x(2)+A(6,2)*x(1)); 

%    -(A(2,2)+2*A(3,2)*x(1)+A(6,2)*x(2)),-(A(4,2)+2*A(5,2)*x(2)+A(6,2)*x(1))]; 

ceq=[]; DCeq=[]; 

17. 

%  17.      [Программа "Расчет ограничений L-задачи"] файл: Z_TSis_F_L 

function [FXo,LXo]= Z_TSis_F_L_MMTT38(Xo) 

global k Zn Sk Pq FXmin d1 d2 d3 d4 

for j=1:4 

   k=j; 

   Zn=Sk(j); 

   fXo=[Z_TS_Krit1max_MMTT38(Xo(1:2))];  

   FXo(j)=fXo; 

  end 

FXo;  

LXo=[(-FXo(1)-FXmin(1,1))/d1 (-FXo(2)-FXmin(2,2))/d2 (-FXo(3)-FXmin(3,3))/d3 (FXo(4)+FXmin(4,4))/d4];         

%  

Конец 
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3.5.  Принятие оптимального решения в двухпараметрической четырехмерной 

модели технологического процесса   

3.5.1. Математическое моделирование технологического процесса при 

равнозначных критериях.  

Решение векторной задачи (78)-(82) базируется на методах, основанных на аксиоматике 

и принципе гарантированного результата при равнозначных критериях, рассмотренных в 

первом разделе. Используя программное обеспечение, результаты решения векторной задачи 

(78)-(82) с равнозначными критериями представим как ряд шагов. 

Шаг 1. Решается векторная задача (78)-(82) по каждому критерию отдельно. 

Используется функция fmincon(…) системы MATLAB. Обращение к функции fmincon(…) в 

[15, 18, 19]. Результат расчета по отдельному критерию представляет точку оптимума: 

 𝑋𝑘
∗ и 𝑓𝑘

∗ = 𝑓𝑘(𝑋𝑘
∗) , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ K=4 – величины критериев в этой точке, т. е. наилучшее 

решение по каждому критерию: 

𝑋1
∗ = {𝑥1 = 2.01, 𝑥2 = 30.01}, 𝑓1

∗ = 𝑓1(𝑋1
∗)  =  −5.8834; 

𝑋2
∗ = {𝑥1 = 3.51, 𝑥2 = 30.01}, 𝑓2

∗ = 𝑓2(𝑋2
∗) =  −78.9642; 

𝑋3
∗ = {𝑥1 = 3.51, 𝑥2 = 12.01}, 𝑓3

∗ =  𝑓3(𝑋3
∗)  =  −0.5424; 

𝑋4
∗ = {𝑥1 = 2.91, 𝑥2 = 12.01}, 𝑓4

∗ = 𝑓4(𝑋4
∗) =  −0.3335.               (83) 

На рисунке 3 представим ограничения (82), получившиеся точки оптимума 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗ 

(83) в двухмерной системе координатах {𝑥1, 𝑥2}. Исследуемое множество допустимых точек 

S не пусто, представляет собой компакт:  

S={XÎRN | 2.0  𝑥1  3.5, 12.0  𝑥2  30.0} ≠ ∅. 

Пространство множества точек, лежащих между точками оптимума 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗ 

представляет с одной стороны допустимое множество  точек S, а с другой стороны множество 

точек, оптимальных по Парето, So. Таким образом для данной задачи множество допустимых 

и множество точек, оптимальных по Парето, So, равны между собой: S = So.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Шаг 2. Решается векторная задача (53)-(57) для вычисления наихудшей величины 

каждого критерия: 𝑌𝑘
0  и ℎ𝑘

0 = ℎ𝑘(𝑌𝑘
0), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, K=4, которые представляют антиоптимум 

решения первого шага. (Верхний индекс ноль). При этом решается ВЗМП (78)-(83) для 

 

Рисунок 3 – Множество Парето, SoS, точки 

оптимума 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗, и оптимальная точка 𝑋𝑜 

в двухмерной системе координат {𝑥1, 𝑥2} 
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каждого критерия 𝑘 = 1, 𝐾1
̅̅ ̅̅ ̅̅  на минимум, и для критериев 𝑘 = 1, 𝐾2

̅̅ ̅̅ ̅̅   на максимум. Как 

результ решения получим: точку оптимума 𝑋𝑘
0 = {𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}  по соответствующему 

критерию 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; 𝑓𝑘
0 = 𝑓𝑘(𝑋𝑘

0) – величину k-го критерия в точке, 𝑋𝑘
0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅:  

𝑋1
0 = {𝑥1 = 3.50, 𝑥2 = 2.0051}, 𝑓1

0 = 𝑓1(𝑋1
0)  =  2.8664; 

 𝑋2
0 = {𝑥1 = 2.1953, 𝑥2 = 12.01}, 𝑓2

0 =  𝑓2(𝑋2
0)  =  13.561 

𝑋3
0 = {𝑥1 = 2.01, 𝑥2 = 12.01}, 𝑓3

0 = (𝑋3
0) = −0.16671; 

𝑋4
0 = {𝑥1 = 3.51, 𝑥2 = 12.01}, 𝑓4

0 =  𝑓4(𝑋4
0) = −1.0848.              (84)  

Шаг 3. Системный анализ (т.е. анализ по каждому критерию) множества точек, 

оптимальных по Парето.  

Определяются в точках оптимума  𝑋∗ = { 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗}  величины целевых функций 

𝐹(𝑋∗) = ‖𝑓𝑞(𝑋𝑘
∗)‖

𝑞=1,𝐾̅̅ ̅̅̅

𝑘=1,𝐾̅̅ ̅̅̅
, вектор отклонений по каждому критерию на допустимом множестве 

S 𝑑𝑘 = 𝑓𝑘
∗ − 𝑓𝑘

0, 𝑘 = 1,4̅̅ ̅̅ : 𝐷 = (𝑑1  𝑑2 𝑑3 𝑑4)𝑇; матрица относительных оценок:  

(𝑌∗) = ‖𝜆𝑞(𝑌𝑘
∗)‖

𝑞=1,𝐾̅̅ ̅̅̅

𝑘=1,𝐾̅̅ ̅̅̅
, где λ𝑘(𝑋) = (ℎ𝑘 − ℎ𝑘

0)/𝑑𝑘. 𝑑𝑘 = {3.017, 65.4, 0.709, 1.418}. 

𝐹(𝑋∗) = ‖

5.883 − 79.327 − 0.06191 0.12381
−3.1730 − 78.9640 0.3039 0.6076

−3.3469 − 17.2061 − 0.5423 1.0848
−4.4506 − 13.6435 0.1668 − 0.3335

‖ , (𝑋∗) = ‖

𝟏. 𝟎 1.0056 0.3234 0.6777
0.1018 𝟏. 𝟎 0.6637 0.3365

0.1594 0.0556 𝟏. 𝟎 0.00
0.5252 0.0014 0.00 𝟏. 𝟎

‖ (85) 

Системный анализ величин по каждому критерию 𝐹(𝑋∗) (85), а также анализ критериев 

в относительных оценках (𝑋∗) показал, что в оптимальных точках  𝑋∗ = { 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗}, 

расположенных по диагонали, относительная оценка (𝑋𝑘
∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  равна единице. 

Остальные критерии значительно меньше единицы. А в задаче требуется найти такую точку 

(параметры технологического процесса), при которых относительные оценки критериев 

наиболее близки к единице. На решение этой задачи направлено построение и решение -

задачи, представленной на шаге 4, 5.  

Шаг 4. Построение -задачи осуществляется в два этапа: на первом этапе строится 

максиминная задача оптимизации с нормализованными критериями:  

λ𝑜 = 𝒎𝒂𝒙𝑿⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑋), 𝐺(𝑋)0, 𝑋  0.                        (86) 

Максиминная задача (86) на втором этапе преобразуется в стандартную 

(однокритериальную) задачу математического программирования (-задача):   

 λ𝑜 = 𝑚𝑎𝑥 ,                                                 (87) 

 – (11.4745 − 4.8992𝑥1 + 0.8868𝑥1
2 − 0.003𝑥2 + 0.0048𝑥2

2 − 0.0595𝑥1𝑥2 −𝑓1
0)/ 𝑑1  0, (88) 

 – (−0.1225 − 0.3735𝑥1 + 0.1916𝑥1
2 + 0.022𝑥2 + 0.0006𝑥2

2 − 0.0173𝑥1𝑥2 − 𝑓2
0)/ 𝑑2  0, (89) 

 – (8.8176 − 7.6809𝑥1 + 2.1456𝑥1
2 + 0.1851𝑥2 + 0.0894𝑥2

2 − 0.1454𝑥1𝑥2 − 𝑓3
0)/ 𝑑3  0, (90) 

 – (−0.245 − 0. 747𝑥1 + 0. 3832𝑥1
2 + 0. 0442𝑥2 + 0.0012𝑥2

2 − 0.0346𝑥1𝑥2 − 𝑓4
0)/ 𝑑4  0, (91) 

ограничения 2.01  𝑥1  3.5, 12.01  𝑥2 30.01,                   (92) 

где вектор неизвестных имеет размерность N+1: X={𝑥1, … , 𝑥2, }, N=2. 

 Шаг 5. Решение -задачи (87)-(92).  

При решении -задачи (87)-(92) используется функция fmincon(…). 

В системе MATLAB обращение к функции fmincon(…), [17, 18]:  

[Xo,Lo]=fmincon('Z_TS_2Krit_L',X0,Ao,bo,Aeq,beq,lbo,ubo,'Z_TS_LConst',options). 

Результат решения векторной задачи оптимизации (78)-(82) при равнозначных 

критериях, с соответствующей -задачей (87)-(92) получили: 
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точка оптимума 𝑿𝒐 при равнозначных критериях 

𝑿𝒐 = {𝑋𝑜, 𝑜} = {𝑋𝑜 = {𝑥1 = 2.804, 𝑥2 =  30.0,𝑜 = 0.35410}},                  (93)  

которая представляет конструктивные параметры технологического процесса при 

равнозначных критериях (характеристиках). Точка оптимума 𝑋𝑜 представлена на рисунке 3;  

величины критериев 𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ в точке оптимума 𝑋𝑜: 

𝑓1(𝑋𝑜) = 3.935, 𝑓2(𝑋𝑜) = 77.931, 𝑓3(𝑋𝑜) = 0.0841, 𝑓4(𝑋𝑜) = 0.1681;           (94) 

которые представляют характеристики технологического процесса; 

величины относительных оценок 𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ в точке оптимума 𝑋𝑜:  

1(𝑋𝑜)=0.3542, 2(𝑋𝑜)=0.9842, 3(𝑋𝑜)=0.3542, 4(𝑋𝑜)=0.6459);              (95) 

максимальный нижний уровень 𝑜  = 0.3542 в точке оптимума 𝑋𝑜: 

который измерен в относительных единицах, среди всех относительных оценок: 

𝑜
=min{1(𝑋𝑜), 2(𝑋𝑜), 3(𝑋𝑜), 4(𝑋𝑜)}= 0.3542; 

𝑜 =  0.3542  также называют гарантированным результатом, измереный в 

относительных единицах. Гарантированный результат говорит о следующем: величину 

относительной оценки 𝜆𝑘(𝑋𝑜)  и величину характеристики технологического процесса 

𝑓𝑘(𝑋𝑜) нельзя улучшить, не ухудшая при этом другие характеристики процесса.  

В точке оптимума 𝑿𝒐, в соответствии с теоремой 1, критерии 1, 3 противоречивы. Это 

противоречие определяется тем, что выполняются равенства: 1(𝑋𝑜)= 3(𝑋𝑜)= 𝑜  = 0.3542, 

а остальные критерии неравенством {2(𝑋𝑜)= 0.9842, 4(𝑋𝑜)= 0.6459}>𝑜
. 

3.5.2. Геометрическая интерпретация результатов решения ВЗМП – модели 

технологического процесса в относительных единицах в трехмерной системе координат 

На рисунке 3 представлено допустимое множество точек S, которое образовано 

ограничениями (82). На этом рисунке точки оптимума 𝑋∗ = { 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗}, объединенные в 

контур, представляют множество точек, оптимальных по Парето, 𝑺𝒐 𝑺. Координаты точек 

{ 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗} , а также характеристики технологического процесса в относительных 

единицах 1(𝑋), 2(𝑋), 3(𝑋), 4(𝑋), представлены на рис. 4 в трех мерном пространстве 𝑥1, 

𝑥2 и , где третья ось  - относительная оценка.  

 

Рисунок 4 – Результаты решения -задачи 𝜆1(𝑌), 𝜆2(𝑌), 𝜆3(𝑌), 𝜆4(𝑌)  

в трехмерной системе координат 𝑥1, 𝑥2 и  
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3.1.1. Решение ВЗМП, представляющей математическую модель технологического 

процесса, с приоритетом критерия (обратная задача).  

Лицом, принимающим решения (ЛПР), как правило, является конструктор 

технологического процесса. 

Шаг 1. Решение векторной задачи (78)-(82) при равнозначных критериях. Результаты 

решения векторной задачи при равнозначных критериях представлены на шаге 1, алгоритм 

решения задачи представлен на разделе 3. Численные результаты решения векторной задачи 

представлены выше. 

Множество точек 𝑆°S , оптимальных по Парето, находится между отдельными 

оптимальными точками {𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗} . Полученная информация {𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗}  вместе с 

точкой оптимума 𝑋𝑜  при равнозначных критериях является основой для исследования и 

принятия решений по структуре множества Парето.  

Если результаты решения векторной задачи с равнозначными критериями 𝑋𝑜  не 

удовлетворяют лицо, принимающее решение, то выбор оптимального решения 

осуществляется по приоритету одного из критериев из подмножества точек   𝑺𝟏
𝒐, 𝑺𝟐

𝒐, 𝑺𝟑
𝒐, 𝑺𝟒

𝒐, 

показанных на рис. 4.  

Шаг 2. Выбор приоритетного критерия 𝑞 ∈ 𝑲 лицом, принимающим решения. 

В соответствии с теоремой 1 известно, что в оптимальной точке 𝑋𝑜 всегда имеется два 

наиболее противоречивых критерия, 𝑞 ∈ 𝑲 и 𝑣 ∈ 𝑲, для которых в относительных единицах 

выполняется точное равенство: 

 λ𝑜 = λ𝑞(𝑋𝑜) = λ𝑣(𝑋𝑜), 𝑞 ∈ 𝑲, 𝑣 ∈ 𝑲, 𝑋Î 𝑺,  

а для остальных критериев 𝑘 ∈ 𝑲 выполняется неравенства: 

 λ𝑜 ≤ λ𝑘(𝑋𝑜), ∀𝑘 ∈ 𝑲, 𝑞 ≠ 𝑣 ≠ 𝑘.  

Для подготовки информации для принятия решения на экран выдаются 

показатели (характеристики) технологического процесса (93), которые получены при 

решении ВЗМП с равнозначными критериями в точке 𝑋𝑜: 

𝐹(𝑋𝑜) = {𝑓1(𝑋𝑜) =  3.9345, 𝑓2(𝑋𝑜) =  77.9319, 𝑓3(𝑋𝑜) = 0.0844, 𝑓4(𝑋𝑜) = 0.1687};   

относительные оценки в 𝑋𝑜: 

(𝑋𝑜) = {1(𝑋𝑜) =  0.3541,2(𝑋𝑜) =  0.9842,3(𝑋𝑜) =  0.3541,4(𝑋𝑜) =  0.6459}.  

Из полученных вычислений 𝜆(𝑋𝑜) видно, что наиболее противоречивыми 

критериями являются первый и третий: 

 𝑜 = {1(𝑋𝑜), 3(𝑋𝑜)} =  0.3541,                      (96) 

Выберем из рис. 4 первый и третий и представим {1(𝑋𝑜), 3(𝑋𝑜)} в относительных 

единицах на рис. 5. 

Как правило, из этой пары: λ𝑜 = λ1(𝑋𝑜) = λ3(𝑋𝑜) противоречивых критериев 

выбирается критерий, который лицо, принимающее решение, хотел бы улучшить. 

Критерий, который выбрал ЛПР, называется «приоритетным критерием»: 𝑞 = 3 ∈ 𝑲.  

Этот критерий исследуется в противоречии с первым критерием 𝑘 = 1 Î 𝑲.  

Выдается сообщение на дисплей:   

q=input('Введите приоритетный критерий (номер) q= ')  - Ввели: q=3.  

Шаг 3. Вычисляются числовые пределы изменения приоритетного критерия q=3ÎK в 

физических и относительных единицах. 

Для этого определяются численные значения критерия q=3ÎK в натуральных единицах 

при переходе из точки оптимума 𝑋𝑜  в точку оптимума 𝑋𝑞
∗, полученную на первом шаге.  

Пределы изменения критерия q=3 в натуральных единицах выдаются на экран: 
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 𝑓𝑞(𝑋𝑜) = −0.084354  𝑓𝑞(𝑋)  − 0.54235 =  𝑓𝑞(𝑋𝑞
∗), 𝑞 = 3Î𝑲.          (97)  

Пределы изменения критерия 𝑞 = 3Î𝑲 в относительных единицах выдаются на экран:  

𝑞(𝑋𝑜) = 0.35407 𝑞(𝑋) 1 = 𝑞(𝑋𝑞
∗), 𝑞 = 3Î𝑲.                       (98) 

Выражения (97) и (98) 𝑓𝑞(𝑋) и 𝑞(𝑋) выдаются на дисплей для анализа.   

Шаг 4. Лицом принимающем решения, осуществляется выбор величины 

приоритетного критерия qÎK. (Decision-making). 

На экран выдается сообщение: «Введите величину приоритетного критерия fq=» - ЛПР 

вводит, например, 𝑓𝑞=0.3. 

Шаг 5. Расчет относительной оценки для критерия 𝑓𝑞 = 0.3. Для заданной величины 

приоритетного критерия 𝑓𝑞=0.3 рассчитывается относительная оценка: 

λ𝑞 =
𝑓𝑞−𝑓𝑞

0

𝑓𝑞
∗−𝑓𝑞

0 =
0.30−(−0.16670)

0.5435−(−0.16670)
= 0. 65821.                                  (99) 

Рассчитанная оценка λ𝑞 при переходе от точки оптимума 𝑋𝑜 к 𝑋𝑞
∗ лежит в пределах:  

𝑞(𝑋𝑜) = 0.35408 𝑞(𝑋) = 0. 65821 1.0 = 𝑞(𝑋𝑞
∗), 𝑞 = 3Î𝑲. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Шаг 6. Расчет коэффициента линейной аппроксимации . 

Используя стандартные приемы линейной аппроксимации и, предполагая линейный 

характер изменения критерия fq(X) в (97), а также соответственно относительной оценки q, 

рассчитаем коэффициент пропорциональности между λ𝑞(𝑋°), λ𝑞, названный как : 

 =
λ𝑞−λ𝑞(𝑋𝑜)

λ𝑞(𝑋𝑞
∗)−λ𝑞(𝑋𝑜)

=
0.6582−0.35407

1−0.35407
= 0.4708..  

Шаг 7. Определим координаты приоритета критериев с размерностью fq=0.3, используя 

коэффициент пропорциональности . 

 

Рисунок 5 – Решение -задачи (87)-(92): функции λ1(𝑋) и λ3(𝑋) 

в трехмерной системе координат 𝑥1 𝑥3  и . В точке 𝑋𝑜  

λ1(𝑋𝑜) = λ2(𝑋𝑜) = λ3(𝑋𝑜)=0. 3542. 
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Мы предполагаем, что изменения вектора 𝑋𝑞 = {𝑥1  𝑥2} , 𝑞 = 3 при переходе от точки 

оптимума 𝑋𝑜  к 𝑋𝑞
∗

 имеет линейный характер. Определим координаты для точки c 

размерностью fq =0.3 с относительной оценкой q:  

𝑋𝑞 = {𝑥1
𝑞

= 𝑥1
𝑜 + (𝑥𝑞

∗(1) − 𝑥1
𝑜), … , 

𝑥𝑁
𝑞

= 𝑥𝑁
𝑜 + (𝑥𝑞

∗(𝑁) − 𝑥𝑁
𝑜 )},                            (100) 

где 𝑋𝑜 = {𝑥1
𝑜, … , 𝑥𝑁

𝑜 }, 𝑋𝑞
∗ = {𝑥𝑞

∗(1), … , 𝑥𝑞
∗(𝑁)}. 

     𝑋𝑜 = {𝑥1
𝑜= 2.8039, 𝑥2

𝑜= 30.01}, 𝑋𝑞
∗ = {𝑥𝑞

∗(1)=3.5, 𝑥𝑞
∗(2)=12.01}. 

В результате решения уравнений (100) получили точку с координатами: 

𝑋𝑞 = {𝑥1 =  3.13171, 𝑥2 = 21.5249}.  

Шаг 8. Вычисление главных показателей точки  𝑋𝑞: 

𝐹𝑞 = {𝑓𝑘(𝑋𝑞), 𝑘 =  1, 𝐾̅̅ ̅̅ ̅};𝜆𝑞 = {λ𝑘(𝑋𝑞) =
𝑓𝑘(𝑋𝑞)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅: 𝑃𝑞 =  {𝑝𝑘
𝑞

=  
 𝜆𝑞(𝑋𝑞)

𝜆𝑘(𝑋𝑞)
, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅}.  

Результат решения векторной задачи оптимизации (78)-(82) при заданной величиной 

третьего приоритетного критерия 𝑓𝑞 = 0.3 получили: 

точка оптимума 𝑿𝒒 при заданном 𝑓𝑞 = 0.3: 𝑋𝑞 = {𝑥1 =  3.13171, 𝑥2 = 21.5249}, 

которая представляет конструктивные параметры технологического процесса при заданной 

величине третьего приоритетного критерия 𝑓𝑞 = 0.3;  

величины критериев 𝑓𝑘(𝑋𝑞), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ в точке оптимума 𝑋𝑞: 

𝐹𝑞 = {𝑓1(𝑋𝑞) = 2.978, 𝑓2(𝑋𝑞) =  41.410, 𝑓3(𝑋𝑞) =  0.1744, 𝑓4(𝑋𝑞) =  0.3489}; 

которые представляют характеристики технологического процесса; 

величины относительных оценок 𝑘(𝑋𝑞), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ в точке оптимума 𝑋𝑞:  

𝜆𝑘(𝑋𝑞) = {𝜆1(𝑋𝑞) = 0.03691, 𝜆2(𝑋𝑞) = 0.426, 𝜆3(𝑋𝑞) = 0.481, 𝜆4(𝑋𝑞) = 0.52}; 

максимальный нижний уровень 𝑜  = 0.3542 в точке оптимума 𝑋𝑜: 

который измерен в относительных единицах, среди всех относительных оценок: 

𝑜
=min{1(𝑋𝑜), 2(𝑋𝑜), 3(𝑋𝑜), 4(𝑋𝑜)}= 0.3542; 

вектор приоритетов 𝑃𝑞 =  {𝑝𝑘
𝑞

=  
 𝜆𝑞(𝑋𝑞)

𝜆𝑘(𝑋𝑞)
, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅}: 

𝑃𝑞 =  {𝑝1
3 =  6.27891, 𝑝2

3 =17.941, 𝑝3
3 =1.0, 𝑝4

3 =0.911].   

По аналогии можно вычислить любую оптимальную точку 𝑿𝒕
𝒐 из множества Парето: 

𝑿𝒕
𝒐 = {𝝀𝒕

𝒐, 𝑿𝒕
𝒐}Î  𝑺𝒐. 

При моделировании могут быть выполнены некоторое множество расчетов. Могут быть 

изменены параметрические ограничения (57), функции. В итоге может быть получен 

некоторый набор оптимальных решений (это и есть математическое моделирование). Из этого 

множества решений выбираем окончательный вариант. В нашем примере в (1) вариант входит 

в полученный набор оптимальных решений: параметры технологического процесса 𝑋𝑜 =

{𝑥1 = 2.804, 𝑥2 =  30.0,𝑜 = 0.35410}  при равнознозначных критериях; параметры 

технологического процесса при заданном приоритетном критерии q=3: 𝑋𝑞 = {𝑥1 =

3.13171, 𝑥2 = 21.5249}. 

Геометрическую интерпретацию симметрии    λ1(𝑋𝑜) = λ3(𝑋𝑜) решения покажем на рис. 6. 

    𝑋1
∗ 1(𝑋1

∗)=1        𝑋2
∗ 2(𝑋2

∗)=1        𝑋3
∗ 3(𝑋3

∗) = 1    𝑋4
∗ 4(𝑋4

∗) = 1 

                             𝑋𝑜     2(𝑋𝑜) = 0.9842     

                             𝑋𝑜    4(𝑋𝑜) = 0.6459 

                             𝑋𝑜    λ1(𝑋𝑜) = λ3(𝑋𝑜) =  λ𝑜 = 0.3541 
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Рис. 6. Геометрическую интерпретацию симметрии в моделировании технологического 

процесса с нормализованными критериями: λ1(𝑋), … , λ4(𝑋).  

Анализ результатов. Рассчитанная на шаге 8 размерность критерия 𝑓𝑞(𝑋𝑡
𝑜), 𝑞 ∈ 𝑲, 

обычно не равна заданной величине 𝑓𝑞 = 0.3. Ошибка выбора:  

𝑓𝑞 = |𝑓𝑞(𝑋𝑡
𝑜) − 𝑓𝑞| = |0.1744 −  0.3| = 0.125, 

характеризуется ошибкой линейной аппроксимации 𝑓𝑞% =
𝑓𝑞

𝑓𝑞
∗ 100 =  40.2%.  

3.1.2. Геометрическая интерпретация в физических единицах результатов 

решение векторной задачи в трехмерной системе координат.  

Мы сформировали параметры технологического процесса 𝑥1, 𝑥2, которые представили, 

во-первых, в двумерной 𝑥1, 𝑥2 на рис. 3, и, во-вторых, в трехмерной системе координат 𝑥1, 

𝑥2 and  на рис. 4, 5, 6. Далее представим эти параметры в физических единицах для каждой 

функции 𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋) последовательно на рис. 7, 8, 9 и 10. 𝑓1(𝑋).  

Первая характеристика технологического процесса в физических единицах показана 

фиг. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Точки оптимума: 

𝑋1
∗

 - точка максимума; 

𝑋𝑜 – равнозначные критерии; 

𝑋𝑞=3 – приоритет 3 критерия; 

𝑋1
0

 – точка минимума  

– это параметры физических характеристик технологического процесса. 

Представим в физических единицах характеристики технологического процесса: 

𝑓1
∗ = 𝑓1(𝑋1

∗)  =  −5.8834  

             𝑓1(𝑋𝑜) = 3.9345  

             𝑓1(𝑋𝑞=3) = 2.9777  

𝑓1
0 = 𝑓1(𝑋1

0)  =  2.8664 

𝑓2(𝑋) вторая характеристика технологического процесса в физических единицах 

показана на фиг. 8. 

 

Рисунок 7 – Первая характеристика 𝑓1(𝑋) технологического процесса в 

физических единицах в трехмерной системе координат {𝑥1 , 𝑥2 and 𝑓1(𝑋)}.. 
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Точки оптимума:  

𝑋2
∗

 - точка максимума; 

𝑋𝑜 – равнозначные критерии; 

𝑋𝑞=3 – приоритет 3 критерия;  

𝑋2
0

 – точка минимума 

– это параметры физических характеристик технологического процесса. 

Представим в физических единицах характеристики технологического процесса: 

𝑓2
∗ = 𝑓2(𝑋2

∗) =  78.931 

             𝑓2(𝑋𝑜) = 77.409  

             𝑓2(𝑋𝑞=3) = 41.409  

𝑓2
0 = 𝑓2(𝑋2

0)  = 13.561 

𝑓3(𝑋) третья характеристика технологического процесса в физических единицах 

показана на фиг. 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 8 – Вторая характеристики 𝑓2(𝑋) технологического процесса в 

физических единицах в трехмерной системе координат {𝑥1 , 𝑥2 and 𝑓2(𝑋)}.. 

 

Рисунок 9 – Третья характеристики 𝑓3(𝑋) технологического процесса в 

физических единицах в трехмерной системе координат {𝑥1 , 𝑥2 and 𝑓3(𝑋)}.. 
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Точки оптимума:  

𝑋3
∗

 – точка максимума; 

𝑋𝑜 – равнозначные критерии; 

𝑋𝑞=3 – приоритет 3 критерия; 

𝑋3
0

 – точка минимума 

– это параметры физических характеристик технологического процесса. 

Представим в физических единицах характеристики технологического процесса: 

𝑓3
∗ = 𝑓3(𝑋3

∗) =  0.5424 

             𝑓3(𝑋𝑜) = 0.0841 

             𝑓3(𝑋𝑞=3) = 0.3174  

𝑓3
0 = 𝑓3(𝑋3

0)  = 0.1667 

𝑓4(𝑋) четвертая характеристики технологического процесса в физических единицах 

показана на рис. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Точки оптимума:  

𝑋4
∗

 - точка максимума; 

𝑋𝑜 – равнозначные критерии; 

𝑋𝑞=3 – приоритет 3 критерия; 

𝑋4
0

 – точка минимума 

– это параметры физических характеристик технологического процесса. 

Представим в физических единицах характеристики технологического процесса: 

𝑓4
∗ = 𝑓4(𝑋4

∗) =  0.3335 

             𝑓4(𝑋𝑜) = 0.1687  

             𝑓4(𝑋𝑞=3) = 0.3468  

𝑓4
0 = 𝑓4(𝑋4

0)  = 1.0848 

 

 

Рисунок 10 – Четвертая характеристики 𝑓4(𝑋) технологического процесса в 

физических единицах в трехмерной системе координат {𝑥1 , 𝑥2 and 𝑓2(𝑋)}. 
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4. Математическая модель и Методология моделирования и выбора оптимальных 

параметров сложных инженерных систем в условиях определенности, неопределенности 

4.1.  Математическая модель технической системы, технологического процесса 

и структуры материала в условиях определенности и неопределенностью в общем виде 

Математические модели технической системы, технологического процесса и структуры 

материала представлены в условиях определенности в моделях: (1a)-(4a), (1b)-(4b), (1c)-(1b) 

и неопределенности: (5a)-(10a), (5b)-(10b), (5c)-(10c). Представим эти модели в общем виде - 

векторной задачей математического программирования: Математическая модель 

инженерной системы (обозначения структуры материала). 

𝑂𝑝𝑡 𝐻(𝑌) = {max 𝐻1(𝑌) = {max ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                       (101) 

max 𝐼1(𝑌) = {max ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},              (102) 

min 𝐻2(𝑌) = {min ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                        (103) 

   min 𝐼2(𝑌) = {min ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾2
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},              (104) 

при ограничениях     ℎ𝑘
𝑚𝑖𝑛 ≤ ℎ𝑘 ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 =  1, 𝐾̅̅ ̅̅ ̅,              (105) 

𝐺(𝑋) ≤ 0, ∑ 𝑦𝑣
𝑉
𝑣=1 = 100%,                            (106) 

   𝑦𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣

𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,                       (107) 

где 𝑌 - вектор управляемых переменных (конструктивных параметров материала);  

𝐻(𝑌) = {𝐻1(𝑌) 𝐼1(𝑌) 𝐻2(𝑌) 𝐼2(𝑌)} - векторный критерий, каждая компонента которого 

представляет вектор критериев (характеристик) материала, которые функционально зависят 

от значений вектора переменных 𝑌 . Критерии 𝐻1(𝑌) 𝐻2(𝑌)  функционально зависят от 

значений вектора переменных 𝑌 , которые сформированы в условиях определенности и 

обозначены 𝐾1
𝑑𝑒𝑓

 𝐾2
𝑑𝑒𝑓

, (definiteness). Критерии 𝐼1(𝑌) 𝐼2(𝑌)  характеризуют дискретные 

значения функций, которые функционально зависят от дискретных значений вектора 

переменных 𝑌 , обозначены 𝐾1
𝑢𝑛𝑐 , 𝐾2

𝑢𝑛𝑐  (uncertainty) множество критериев max и min 

сформированы в условиях неопределенности. 

Стандартные ограничения (105) и (106): функциональные, параметрические и общие, 

(107) параметрические ограничения.    

4.2.  Методология моделирования и выбора оптимальных параметров сложных 

инженерных систем в условиях определенности, неопределенности 

В качестве объекта исследования нами рассматриваются «сложная 

(многофункциональная) инженерная система», [17, 42, 44]. В организационном плане процесс 

моделирования и симулирования (the process of modeling and simulation of a engineering system) 

сложных инженерных систем, включающий три вида выше представленных задач, 

сформирован в виде методологии.  

Методология разделена на две части. Первая часть – «Выбор оптимальных параметров 

инженерных систем в условиях определенности – равнозначные критерии»: включает два 

блока, вторая часть– «Выбор оптимальных параметров инженерных систем в условиях 

неопределенности - с приоритетом одного из критериев»: включает два блока. Каждый блок 

разделен на ряд этапов. 

«Методология выбора оптимальных параметров инженерных систем в условиях 

определенности и неопределенности на базе многомерной математики».  

Часть 1. Выбор оптимальных параметров инженерных систем в условиях 

определенности – равнозначные критерии. 
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Блок 1. Формирование технического задания, преобразование условий 

неопределенности (связанных с экспериментальными данными) в условия определенности, 

построение математической и численной модели инженерной системы (the process of modeling 

of a engineering system) включает 4 этапа. 

1 этап. Формирование технического задания (исходных данных) для численного 

моделирования и выбора оптимальных параметров системы. Исходные данные формирует 

конструктор, который проектирует инженерную систему.  

2 этап. Построение математической и численной модели инженерной системы в 

условиях определенности. 

3 этап. Преобразование условий неопределенности в условия определенности и 

построение математической и численной модели инженерной системы в условиях 

определенности. 

4 этап. Построение агрегированной математической и численной модели инженерной 

системы в условиях определенности. 

Блок 2. Принятие оптимального решения (выбора оптимальных параметров) в 

инженерной системе (материал) при равнозначных критериях на базе многомерной 

математики (the process of simulation of a engineering system) 

5 этап. Решение векторной задачи математического программирования (ВЗМП) - 

модели инженерной системы при равнозначных критериях (решение прямой задачи).  

6 этап. Геометрическая интерпретация результатов решения ВЗМП при равнозначных 

критериях в трехмерной системе координат в относительных единицах. 

7 этап. Анализ результатов решения Векторной Задачи Математического 

Программирования при равнозначных критериях - подготовка информации для принятия 

решений с приоритетом отдельного критерия из всего множества критериев. 

Часть 2. Выбор оптимальных параметров инженерных систем в условиях 

неопределенности - с приоритетом одного из критериев. 

Блок 3. Анализ, сравнение результатов решения ВЗМП при равнозначных критериях 

сложной инженерной системы (модели структуры материала) и подготовка к выбору 

оптимальных параметров по приоритетному критерию. 

8 этап. 1. Анализ и сравнение результатов решения векторной задачи с равнозначными 

критериями с четырьмя и двумя переменными. 2. Вывод из анализа: Информация об 

Инженерной Системе в физических единицах для принятия решений с приоритетом 

критерия. 3. Подготовка к геометрической интерпретации решения векторной задачи выбора 

оптимальных параметров по приоритетному критерию. 

9 этап. Геометрическая интерпретация результатов решения при проектировании 

инженерной системы перехода от двухмерного к N-мерному пространству в относительных 

единицах. 

Блок 4.k1. Исследование, выбор оптимальных параметров сложной инженерной 

системы (структура материала) по первому приоритетному критерию, геометрическая 

интерпретация результатов решения ВЗМП  

4.1.k1. Решение ВЗМП - модели сложной инженерной системы (структуры материала) 

при заданном приоритете первого критерия в многомерной математике. (решение обратной 

задачи). 4.2.k1. Анализ результатов решения векторной задачи математического 

программирования - модели инженерной системы при заданном приоритете первого критерия. 
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4.3.k1. Геометрическая интерпретация результатов решения векторной задачи выбора 

оптимальных параметров по первому приоритетному критерию в относительных единицах. 

4.4.k1. Геометрическая интерпретация результатов решения ВЗМП с приоритетом первого 

критерия – модели структуры материала при проектировании в трехмерной системе 

координат в физических единицах. Остальные три блока сформированы по аналогии 

Блок 4.k2. Исследование, выбор оптимальных параметров сложной инженерной 

системы (структура материала) по второму приоритетному критерию, геометрическая 

интерпретация результатов решения ВЗМП.  

Блок 4.k3. Исследование, выбор оптимальных параметров сложной инженерной 

системы (структура материала) по третьему приоритетному критерию, геометрическая 

интерпретация результатов решения ВЗМП.  

Блок 4.k4. Исследование, выбор оптимальных параметров сложной инженерной 

системы (структура материала) по четвертому приоритетному критерию, геометрическая 

интерпретация результатов решения ВЗМП. 

4.3.  Моделирование и принятие оптимального решения по числовому 

множеству критериев структуры материала с четырьмя параметрами 

В качестве объекта исследования нами рассматриваются «Инженерные системы», к 

которым относятся «структура материала», [18, 20-26]. Структура материала рассматривается 

с четырьмя параметрами и четырьмя характеристиками. Экспериментальные данные 

структуры материала представим в виде задачи принятия решений второго вида (70):  

𝐹 = |
 𝑥1,1 𝑥2,1 𝑥3,1 𝑥4,1   𝑓1

1, … , 𝑓1
𝐾

…
𝑥1,𝑀  𝑥2,𝑀  𝑥3,𝑀 𝑥4,𝑀 𝑓𝑀

1 , … , 𝑓𝑀
𝐾

| - problem of 2-type,  𝐾 = 4.            (108) 

Исследование инженерной системы (структура материала) выполнено:  

во-первых, в условиях определенности, когда известны данные о функциональных 

характеристиках инженерной системы;  

во-вторых, в условиях неопределенности, когда известны дискретные значения 

отдельных характеристик; также известны данные об ограничениях, которые накладываются 

на функционирование системы (структура материала).  

Используя регрессионный анализ экспериментальные данные 𝐹  преобразуются в 

векторную задачу математического программирования: 

𝑚𝑎𝑥 𝑓𝑘(𝑋, 𝐴) = 𝑎0𝑘 + 𝑎1𝑘𝑥1 + 𝑎2𝑘𝑥2 + 𝑎3𝑘𝑥3 + 𝑎4𝑘𝑥4 + 𝑎5𝑘𝑥1𝑥2 + 𝑎6𝑘𝑥1𝑥3 + 𝑎7𝑘𝑥1𝑥4 +

𝑎8𝑘𝑥2𝑥3 + 𝑎9𝑘𝑥2𝑥4 + 𝑎10𝑘𝑥3𝑥4 + 𝑎11𝑘𝑥1
2 + 𝑎12𝑘𝑥2

2 + 𝑎13𝑘𝑥2
2 + 𝑎14𝑘𝑥2

2, 𝑘 = 1,  𝐾1
̅̅ ̅̅ ̅̅ ̅.  

  𝑚𝑖𝑛 𝑓𝑘(𝑋, 𝐴) = 𝑎0𝑘 + 𝑎1𝑘𝑥1 + 𝑎2𝑘𝑥2 + 𝑎3𝑘𝑥3 + 𝑎4𝑘𝑥4 + 𝑎5𝑘𝑥1𝑥2 + 𝑎6𝑘𝑥1𝑥3 + 𝑎7𝑘𝑥1𝑥4 +

𝑎8𝑘𝑥2𝑥3 + 𝑎9𝑘𝑥2𝑥4 + 𝑎10𝑘𝑥3𝑥4 + 𝑎11𝑘𝑥1
2 + 𝑎12𝑘𝑥2

2 + 𝑎13𝑘𝑥2
2 + 𝑎14𝑘𝑥2

2, 𝑘 = 1,  𝐾2
̅̅ ̅̅ ̅̅ ̅.         (109) 

При ограничениях 𝑥1
0  𝑥1  𝑥1

∗, 𝑥2
0 𝑥2 𝑥2

∗, 𝑥3
0 𝑥3 𝑥3

∗, 𝑥4
0 𝑥4 𝑥4

∗. 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 100.                                                              (110) 

Математический аппарат моделирования инженерной системы (109)-(110) базируется 

на теории и методах векторной оптимизации, которые представлены в предыдущих главах.  
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5. Выбор оптимальных параметров инженерной системы (материал сложной 

структуры) в условиях определенности и неопределенности на базе многомерной 

математики. Численная реализация. 

Первый этап, а также этап анализа результатов решения, выбора приоритетного критерия 

и его величины выполняется конструктором материала сложной структуры. Остальные 

этапы выполняются математиком - программистом. 

5.1.  Часть 1. Выбор оптимальных параметров инженерных систем в условиях 

определенности – равнозначные критерии. 

5.1.1. 1 этап. Формирование Технического задания (исходных данных): «Выбор 

оптимальных параметров материала сложной структуры». 

Исходные данные формирует конструктор, который проектирует инженерную систему. 

Дано. Мы исследуем структуру материала. Состав структуры материала определяется 

четырьмя компонентами: 𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4} , которые представляют вектор управляемых 

переменных. Параметры структуры материала заданы в следующих пределах: 

 21  𝑦1  79;  5  𝑦2  59;  2.1  𝑦3  9.0;  2.2  𝑦4  7.0.               (111)    

Качество состава структуры материала определяются четырьмя характеристиками: 

𝐻(𝑌) = {ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌)} , величина оценки которых зависит от вектора 

параметров 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅, 𝑁 = 4}. 

Условия определенности. Они характеризуются тем, что для первой характеристики 

ℎ1(𝑌) известна функциональная зависимость от параметров 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅, 𝑁 = 4}.     

ℎ1(𝑌) = 323.84 − 2.249𝑦1 −  3.49𝑦2 + 10.7267𝑦3 + 13.124𝑦4 + 0.0968𝑦1𝑦2 −

0.062𝑦1𝑦3 − 0.169𝑦1𝑦4  + 0.0743𝑦2𝑦3 − 0.1042𝑦2𝑦4 −  0.0036𝑦3𝑦4 + 0.0143𝑦1
2 + 0.0118𝑦2

2 −

0.2434𝑦3
2 − 0.5026𝑥4

2,   (112) 

Условия неопределенности. Они характеризуются тем, что для второй, третьей и 

четвертой характеристики: ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌)  известны результаты экспериментальных 

данных: величины параметров и соответствующих характеристик. Числовые значения 

параметров 𝑌 и характеристик ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌) представлены в таблице 1. 

Таблица 1 

Числовые значения параметров и характеристик материала 

y1 y2 y3 y4 h2(Y) h3(Y) h4(Y) 
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20 

20 

20 

20 

20 
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20 

20 
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20 

20 
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0 

0 

30 
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30 

30 

30 

2 

2 

2 

5 

5 

5 

8 

8 

8 

2 

2 

2 

5 

5 

5 

2 

5 

8 

2 

5 

8 

2 

5 

8 

2 

5 

8 

2 

5 

8 

1149.6    

1164.0    

1176.0    

1212.0    

1260.0    

1257.6    

1256.4    

1252.8    

1251.6    

2143.2    

2154.0    

2163.6    

2176.8    

2185.2    

2198.4    

115.1 

114.5 

114.4 

118.8 

113.8 

113.3 

110.7 

109.2 

108.5 

128.3 

127.4 

126.8 

126.1 

124.3 

124.1 

24.24   

27.60   

28.80   

30.00   

31.20   

32.40   

33.60   

34.80   

34.80   

19.92   

21.60   

25.20   

29.76   

33.48   

37.20   
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2211.6    

2232.0    

2245.2    

2954.4    

2820.0    

2772.0    

2748.0    

2832.0    

2904.0    

3022.8    

3036.0    

3056.4    

3583.2    

3601.2    

3608.4    

3616.8    

3622.8    

3637.2    

3651.6    

3672.0    

36852    

1195.2    

1212.0    

1236.0    

1251.6    

1272.0    

1296.0    

1318.8    

1344.0    

1388.4    

2176.8    

2196.0    

2220.0    

2245.2    

2286.0    

2294.4    

2313.6    

2340.0    

2382.0    

2988.0    

3012.0    

3036.0    

3056.4    

3108.0    

123.9 

121.4 

121.7 

150.4 

144.9 

140.8 

138.6 

140.8 

143.5 

146.0 

144.9 

143.8 

181.3 

180.8 

179.4 

179.1 

178.0 

177.6 

176.9 

175.3 

174.7 

123.6 

118.7 

115.9 

115.1 

113.2 

111.8 

110.7 

108.2 

106.3 

132.8 

131.1 

129.7 

128.3 

127.0 

125.6 

123.9 

114.5 

119.5 

154.8 

153.2 

151.8 

150.4 

150.7 

39.48   

42.00   

49.20   

15.60   

18.00   

21.60   

24.24  

28.80   

32.40   

35.16   

39.60   

44.88  

11.28   

14.40   

16.80   

21.12   

22.80   

27.60   

30.84   

36.00   

40.56   

52.80   

60.00   

64.80   

68.64   

75.60   

82.80   

88.08   

97.20  

107.64   

40.56   

45.60   

52.80   

60.00   

67.20   

73.20   

79.44   

85.20   

99.00   

31.92   

36.00   

43.20   

51.36   

61.20   
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5 
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5 
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3156.0    

3244.8    

3228.0    

3193.2    

3616.8    

3639.6    

3660.0    

3685.2    

3708.0    

3732.0    

3753.6    

3672.0    

3822.0    

1218.0    

1248.0    

1272.0    

1318.8    

1344.0    

1392.0    

1422.0    

1464.0    

1524.0 

151.2 

151.5 

144.9 

140.8 

185.7 

183.5 

182.2 

181.3 

179.4 

178.0 

176.9 

175.3 

172.5 

128.3 

125.6 

124.2 

121.7 

118.7 

115.9 

115.1 

110.4 

108.5 

72.00   

82.80   

86.40   

90.36   

23.28   

30.00   

36.00   

42.72   

48.00   

54.00   

62.16   

73.20   

81.72   

87.00   

94.80  

103.20  

116.16  

126.00  

136.80  

145.44  

156.00  

174.72 

min yi(X), i=1,…, 81 1149.6 92.4 11.3 

max yi(X), i=1,…, 81 3822.0 161.5 174.7 

 

На числовые значения параметров 𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4} наложены ограничения: 

𝑦1 + 𝑦2 +  𝑦3, +𝑦4 = 100. 

Величину оценки по первой и третьей характеристики (по критерию) желательно, 

получить как можно выше: ℎ1(𝑌) → 𝑚𝑎𝑥, ℎ3(𝑌) → 𝑚𝑎𝑥; второй и четвертой как можно ниже: 

ℎ2(𝑌) → 𝑚𝑖𝑛, ℎ4(𝑌) → 𝑚𝑖𝑛. Параметры (состав) материала:  

𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4} изменяются в следующих пределах:     

𝑦1 ∈ [20.0  50.0  80.0], 𝑦2 ∈ [0.0  30.0  60.0], 𝑦3 ∈ [2.0  5.0  8.0], 𝑦4 ∈ [2.2 5.5 8.8].      (113) 

Требуется. 1) Разработать математическую модель структуры исследуемого материала в 

виде векторной задачи математического программирования. 2) На основе разработанных методов 

решения ВЗНП построить программное обеспечение в системе MATLAB. Решить векторную 

задачу с равнозначными критериями: выбрать оптимальную структуру материала. 4) Выбрать 

приоритетный критерий. Решить задачу векторной оптимизации и принять наилучшее 

(оптимальное) решение с заданным приоритетом критерия. 5) Представить геометрическую 

интерпретацию результатов решения при проектировании инженерной системы перехода от 

двухмерного к N-мерному пространству в относительных единицах. 6) Показать геометрическую 

интерпретацию результатов решения при проектировании инженерной системы перехода от 

двухмерного к N-мерному пространству в физических единицах. 
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Примечание. Автором разработано программное обеспечение в системе MATLAB для 

решения векторных задач математического программирования. Векторная задача включает 

четыре переменных (параметров технической системы): 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}  и четырьмя 

критерия (характеристики)  

𝐹(𝑋) = {𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋)} . Но для каждых новых данных (новая система) 

программа настраивается индивидуально. В программном обеспечении критерии 𝐹(𝑋) =

{𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓6(𝑋)} с условиями неопределенности (в таблице 1 они представлены как 

часть {𝑦1, 𝑦2, 𝑦3, 𝑦4} ) могут изменяться от нуля (т.е. все критерии построены в условиях 

определенности) до шести (т.е. все критерии построены в условиях неопределенности).  

1а этап. Математическая модель структуры материала в условиях определенности 

Построение математической модели для принятия оптимального управленческого 

решения структуры материала показано в разделе 7.5. В соответствии с (101)-(107) представим 

математическую модель материала в условиях определенности и неопределенности в 

совокупности в виде векторной задачи: 

𝑂𝑝𝑡 𝐻(𝑌)  =  {max 𝐻1(𝑌) = {max ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},           (114) 

    max 𝐼1(𝑌) ≡ {max ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},           (115)  

  min 𝐻2(𝑌) = {min ℎ𝑘 (𝑋), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

,                                (116)  

  min 𝐼2(𝑌) ≡ {min ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},         (117)  

при ограничениях:  ℎ𝑘
𝑚𝑖𝑛  ≤ ℎ𝑘(𝑌) ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 

 𝑦𝑗
𝑚𝑖𝑛 ≤ 𝑦𝑗 ≤  𝑦𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅, 𝑦1 + 𝑦2 + 𝑦3, +𝑦4 = 100,         (118) 

где 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} - вектор управляемых переменных (конструктивных параметров 

материала);  

𝐻(𝑌) = {𝐻1(𝑌) 𝐻2(𝑌) 𝐼1(𝑌), 𝐼2(Y)}   представляет векторный критерий, каждая 

компонента которого является вектором критериев (характеристик) материала, которые 

функционально зависят от дискретных значений вектора переменных;  

𝐻1(Y) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

}, 𝐻2(𝑌)  =  {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

} – это множество функций   

max и min соответственно; 

 𝐼1(𝑌) = {{ℎ𝑘(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}, 

 𝐼2(𝑌) = {{ℎ𝑘(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾2
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}  – это множество матриц max и min 

соответственно; ( definiteness), 𝐾1
𝑢𝑛𝑐 . 𝐾2

𝑢𝑛𝑐  (uncertainty) множество критериев max и min 

сформированные в условиях определенности и неопределенности;  

в (118) ℎ𝑘
𝑚𝑖𝑛 ℎ𝑘(𝑌)  ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  представлена вектор-функция ограничений, 

накладываемых на функционирование материала; 

в (118) 𝑦𝑗
𝑚𝑖𝑛 𝑦𝑗   𝑦𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅ – параметрические ограничения.  

Примем, что функции ℎ𝑘(𝑋), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  дифференцируемы и выпуклы, 𝑔𝑖(𝑋), 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅  

непрерывны, а заданное ограничениями (118) множество допустимых точек S не пусто: 

𝑺 = {𝑌Î𝑅𝑛|𝐺(𝑌) ≤ 0, 𝑌𝑚𝑖𝑛 ≤ 𝑌 ≤ 𝑌𝑚𝑎𝑥} ≠ ∅, и представляет собой компакт. 

5.1.2. 2 этап. Построение численной модели структуры материала в условиях 

определенности  

 Условия определенности характеризуются функциональной зависимостью каждой 

характеристики и ограничений от параметров материала. В примере известны характеристика 
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(112) и ограничения (111). Используя информационные данные (111), (112) построим 

однокритериальную задачу нелинейного программирования в условиях определенности: 

𝑚𝑎𝑥 ℎ1(𝑌) = 323.84 − 2.249𝑦1 −  3.49𝑦2 + 10.7267𝑦3 + 13.124𝑦4 + 0.0968𝑦1𝑦2 −

0.062𝑦1𝑦3 − 0.169𝑦1𝑦4  + 0.0743𝑦2𝑦3 − 0.1042𝑦2𝑦4 −  0.0036𝑦3𝑦4 + 0.0143𝑦1
2 + 0.0118𝑦2

2 −

0.2434𝑦3
2 − 0.5026𝑦4

2, (119) 

             при ограничениях: 𝑦1 +  𝑦2 +  𝑦3 +  𝑦4 = 100, 

 21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.    (120) 

Эти данные в дальнейшем используются при построении математической модели 

материала. 

5.1.3. 3 этап. Преобразование экспериментальных данных в данные с 

функциональной зависимостью и построение математической модели инженерной 

системы в условиях неопределенности.  

Условия неопределенности характеризуются тем, что исходные данные, 

характеризующие исследуемого объекта, представлены: а) случайными, б) нечеткими, или, в) 

не полными данными, т. е. в условиях неопределенности известны лишь конечное множество 

𝑌 измеренных параметров 𝑦 = 1, 𝑌̅̅ ̅̅ ̅: 

 𝑌𝑣 = {𝑦𝑖𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ , где   𝑣 = 1, 𝑉̅̅ ̅̅ ̅ - число компонент (параметров), из которых 

может быть составлен (изготовлен) материал, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅  – номер и множество данных; и 

соответствующее множество 𝐾 характеристик: 

 ℎ𝑘(𝑌𝑣 = {𝑦𝑖𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

Поэтому в условиях неопределенности отсутствует достаточная информация о 

функциональной зависимости каждой характеристики и ограничений от параметров. 

Информационные данные опций a) и b) преобразуются в числовые данные опции c) и 

представляются в табличной форме. В работе рассматривается опция c) информация с 

неполными данными, которые, как правило, получены в результате эксперимента. 

С учетом измеренных параметров 𝑌𝑣 и соответствующего множества 𝐾 характеристик:  

ℎ𝑘(𝑌𝑣 = {𝑦𝑖𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅}, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  представим матрицу результатов 

экспериментальных данных по исследуемому материалу:  

𝐼 = |

 𝑎1 
…

 𝑎𝑀 
| = |

𝑌1 = 𝑦11, 𝑦12, 𝑦13, 𝑦14 ℎ2(𝑌1), ℎ3(𝑌1), ℎ4(𝑌1)
…

𝑌𝑀 = 𝑦𝑀1, 𝑦𝑀2, 𝑦𝑀3, 𝑦𝑀4ℎ2(𝑌𝑀), ℎ3(𝑌𝑀), ℎ4(𝑌𝑀)
|,              (121) 

Представим математическую модель структуры материала в условиях 

неопределенности в виде векторной задачи математического программирования: 

𝑂𝑝𝑡 𝐻(𝑋)  =  {max 𝐼1(𝑌) ≡ {max ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},    (122)  

                  min 𝐼2(𝑌) ≡ {min ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾2
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},             (123)  

at restriction                ℎ𝑘
𝑚𝑖𝑛  ≤  ℎ𝑘(𝑌) ≤ ℎ𝑘

𝑚𝑎𝑥 , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,              (123) 

∑ 𝑦𝑣(𝑡)𝑉
𝑣=1 = 100%, 𝑦𝑣

𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤ 𝑦𝑣
𝑚𝑎𝑥, 𝑣 =  1, 𝑉̅̅ ̅̅ ̅,                (125) 

где 𝑌 = {𝑦𝑣, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅} - вектор управляемых переменных (параметров);  

𝐻(𝑌) = {𝐼1(𝑌) 𝐼2(𝑌)} - векторный критерий, каждая компонента которого представляет 

вектор критериев (выходных характеристик исследуемого объекта). Величина характеристики 

(функции) зависит от дискретных значений вектора переменных Y. 𝐼1(𝑌) = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐼2(𝑌) =

1, 𝐾2
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅  (uncertainty) – множество критериев max и min сформированные в условиях 

неопределенности;  
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в (124) ℎ𝑘
𝑚𝑖𝑛  ≤ ℎ(𝑋) ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ – вектор-функция ограничений, накладываемых 

на функционирование исследуемого объекта, 𝑦𝑣
𝑚𝑖𝑛 ≤ 𝑦𝑣 ≤  𝑦𝑣

𝑚𝑎𝑥, 𝑣 = 1, 𝑉̅̅ ̅̅ ̅ – параметрические 

ограничения исследуемого объекта. 

5.1.4. 4 этап. Построение численной модели структуры материала в условиях 

неопределенности.  

Формирование в условиях неопределенности состоит в использовании качественных, 

количественных описаний материала, полученных по принципу “вход-выход” в таблице 2.  

Преобразование исходные данных (информации): 

 ℎ2(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), ℎ3(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ ), ℎ4(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )  

в функциональный вид:  ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌)  осуществляется путем использования 

математических методов регрессионного анализа. 

Исходные данные сформированы в таблице 2 в системе MATLAB в виде матрицы:  

𝐼 = |𝑌, 𝐻|  = {𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3, 𝑦𝑖4, ℎ𝑖2, ℎ𝑖3, ℎ𝑖4, 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ }.           (126) 

Для каждого набора экспериментального данных таблицы 2 ℎ𝑘 , 𝑘 = 2, 3, 4 строится 

функция регрессии методом наименьших квадратов 𝐦𝐢𝐧 ∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑀

𝑖=1  в системе MATLAB.  

Формируется полином Ak, определяющий взаимосвязь параметров 𝑌𝑖 = {𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3, 𝑦𝑖4} и 

функции 𝑦𝑘𝑖̅̅ ̅̅ = ℎ(𝑌𝑖 , 𝐴𝑘), 𝑘 =  2, 3, 4. Результатом является система коэффициентов: 

 𝐴𝑘 = {𝐴0𝑘, 𝐴1𝑘, … , 𝐴14𝑘}, определяющие коэффициенты квадратичного полинома: 

ℎ𝑘(𝑌, 𝐴) = 𝐴0𝑘 + 𝐴1𝑘𝑦1 + 𝐴2𝑘𝑦2 + 𝐴3𝑘𝑦3 + 𝐴4𝑘𝑦4 + 𝐴5𝑘𝑦1𝑦2 + 𝐴6𝑘𝑦1𝑦3 + 𝐴7𝑘𝑦1𝑦4 +

𝐴8𝑘𝑦2𝑦3 + 𝐴9𝑘𝑦2𝑦4 + 𝐴10𝑘𝑦3𝑦4 + 𝐴11𝑘𝑦1
2 + 𝐴12𝑘𝑦2

2 + 𝐴13𝑘𝑦3
2 + 𝐴14𝑘𝑦4

2, 𝑘 =  2, 3, 4. (127) 

Программное обеспечение полиномиальной аппроксимации с четырьмя переменными 

и четырнадцатью факторами разработано. В итоге экспериментальные данные таблицы 2 

преобразуются систему коэффициентов трех функции (127) в виде таблицы (Программа: 

Z_Material_MMTT32_os13_4k):  

   Ao=[323.8408  954.8634  110.02   21.0051                    (128)    

-2.2495   28.6719    0.9106   -0.0101 

-3.4938   37.0392    0.6206   -0.8403 

10.7267  -31.0303   -0.4287   -0.4314 

13.1239  -54.0031   -2.5176    1.1718 

0.0969   -0.9219   -0.0151    0.0166 

-0.0621    0.5644   -0.0094    0.0850 

-0.1696    0.8966    0.0222   -0.0001 

0.0743   -0.1540   -0.0198    0.0522 

-0.1042    0.3919    0.0184    0.0003 

0.0036   -0.0135   -0.0006    0.0006 

0.0142    0.0477   -0.0004   -0.0021 

0.0117    0.0437   -0.0003    0.0035 

-0.2433    3.8489    0.0390    0.0061 

-0.5026    3.1748    0.1414   -0.0310]; 

Rj =[0.6115    0.7149    0.6551    0.9017]; 

RRj=[0.3740    0.5111    0.4292    0.8130]; 

На основе    Ao(2)   Ao(3)   Ao(4) строятся функции ℎ2(𝑌), ℎ3(𝑌) и ℎ4(𝑌), которые с 

учетом полученных коэффициентов примут вид: 
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𝑚𝑎𝑥 ℎ3(𝑌)110.22 + 0.7918𝑦1 + 1.73𝑦2 − 0.3713𝑦3 − 2.20𝑦4 − 0.0132𝑦1𝑦2 −

0.008𝑦1𝑦3 + 0.0193𝑦1𝑦4 − 0.0172𝑦2𝑦3 +  0.0161𝑦2𝑦4 − 0.0006𝑦3𝑦4 − 0.0004𝑦1
2 −

0.0002𝑦2
2 + 0.0335𝑦3

2 + 0.124𝑦4
2,                                                           (129)  

𝑚𝑖𝑛 ℎ2(𝑌)954.86 + 28.67𝑦1 + 37.03𝑦2 − 31.03𝑦3 + 54𝑦4 − 0.922𝑦1𝑦2 − 2𝑦1𝑦3 +

0.896𝑦1𝑦4 − 0.154𝑦2𝑦3 + 0.3919𝑦2𝑦4 −  0.0134𝑦3𝑦4 + 0.0478𝑦1
2 + 0.0438𝑦2

2 + 3.8489𝑦3
2 +

3.1748𝑦4
2,                                                                                    (130) 

𝑚𝑖𝑛 ℎ4(𝑌)21.004 − 0.0097𝑦1 − 0.841𝑦2 − 0.4326𝑦3 + 1.1723𝑦4 + 0166𝑦1𝑦2 +

0.085𝑦1𝑦3 − 0.0001𝑦1𝑦4 + 0.0523𝑦2𝑦3  + 0.0002𝑦2𝑦4 + 0.0006𝑦3𝑦4 − 0.0022𝑦1
2 +

0.0035𝑦2
2 + 0.006𝑦3

2 − 0.0311𝑦4
2,                                                           (131) 

при ограничениях: 𝑦1 + 𝑦2 +  𝑦3 + 𝑦4 = 100,                                       (132) 

 21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.            (133) 

Минимальные и максимальные значения экспериментальных данных 𝑦1, … , 𝑦4 

представлены в нижней части таблицы 2. Минимальные и максимальные значения функций 

ℎ1(𝑌), ℎ3(𝑌), ℎ2(𝑌), ℎ4(𝑌) незначительно отличаются от экспериментальных данных. Индекс 

корреляции и коэффициенты детерминации представлены в нижних строках таблицы 2. 

Результаты регрессионного анализа (129)-(133) в дальнейшем используются при построении 

математической модели материала. 

Получившаяся математическая модель в виде ВЗМП (129)-(133) является численной 

моделью структуры материала в условиях неопределенности. 

5.1.5. 5 этап. Построение агрегированной (включающей условия определенности и 

неопределенности) математической и численной модели инженерной системы в 

условиях определенности 

Объединяя математические модели структуры материала в условиях определённости 

(119)-(120) и неопределённости (122)-(125) представим математическую модель материала в 

условиях определенности и неопределенности в совокупности в виде векторной задачи: 

𝑂𝑝𝑡 𝐻(𝑌)  =  {max 𝐻1(𝑌) = {max ℎ𝑘 (𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

},                 (134) 

    max 𝐼1(𝑌) ≡ {max ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅},                (135)  

  min 𝐻2(𝑌) = {min ℎ𝑘 (𝑋), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

,                  (136)  

  min 𝐼2(𝑌) ≡ {min ℎ𝑘 (𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇 , 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}},            (137)  

при ограничениях 

 ℎ𝑘
𝑚𝑖𝑛  ≤ ℎ𝑘(𝑌) ≤ ℎ𝑘

𝑚𝑎𝑥, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑦𝑗
𝑚𝑖𝑛 ≤ 𝑦𝑗 ≤  𝑦𝑗

𝑚𝑎𝑥, 𝑗 = 1, 𝑁̅̅ ̅̅ ̅,  (138) 

где 𝑌 = {𝑦𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅} - вектор управляемых переменных (конструктивных параметров);  

𝐻1(Y) = {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾1
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

}, 𝐻2(𝑌)  =  {ℎ𝑘(𝑌), 𝑘 = 1, 𝐾2
𝑑𝑒𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅

} –  

множество функций   max и min соответственно; 

 𝐼1(𝑌) = {{ℎ𝑘(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾1
𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅}, 𝐼2(𝑌) = {{ℎ𝑘(𝑌𝑖 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ )}𝑇, 𝑘 = 1, 𝐾2

𝑢𝑛𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅} - (139)  

множество матриц max и min соответственно; ( definiteness), 𝐾1
𝑢𝑛𝑐 . 𝐾2

𝑢𝑛𝑐  (uncertainty) 

множество критериев max и min сформированные в условиях определенности и 

неопределенности;  

Объединяя численные модели структуры материала в условиях определённости (126) и 

неопределённости (129)-(133) представим числовую модель материала в условиях 

определенности и неопределенности в совокупности в виде векторной задачи: 
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𝑜𝑝𝑡 𝐻(𝑌) = {max 𝐻1(𝑋) = {max ℎ1(𝑌)323.84 − 2.25𝑦1 − 3.49𝑦2 + 10.72𝑦3  + 13.124𝑦4 +

0.0968𝑦1𝑦2 − 0.062𝑦1𝑦3 − 0.169𝑦1𝑦4  + 0.0743𝑦2𝑦3 − 0.1𝑦2𝑦4 −  0.0036𝑦3𝑦4 + 0.0143𝑦1
2 +

0.0118𝑦2
2 − 0.2434𝑦3

2 − 0.5026𝑦4
2,                                                          (140) 

𝑚𝑎𝑥 ℎ3(𝑌)110.22 + 0.7918𝑦1 + 1.73𝑦2 − 0.3713𝑦3 − 2.20𝑦4 − 0.0132𝑦1𝑦2 − 0.008𝑦1𝑦3 +

0.0193𝑦1𝑦4 − 0.0172𝑦2𝑦3 +  0.0161𝑦2𝑦4 − 0.0006𝑦3𝑦4 − 0.0004𝑦1
2 − 0.0002𝑦2

2 + 0.0335𝑦3
2 +

0.124𝑦4
2},                                                                                    (141)  

 min 𝐻2(𝑌) = {𝑚𝑖𝑛 ℎ2(𝑌)954.86 + 28.67𝑦1 + 37.03𝑦2 − 31.03𝑦3 + 54𝑦4 − 0.922𝑦1𝑦2 −

2𝑦1𝑦3 + 0.896𝑦1𝑦4 − 0.154𝑦2𝑦3 + 0.3919𝑦2𝑦4 −  0.0134𝑦3𝑦4 + 0.0478𝑦1
2 + 0.0438𝑦2

2 +

3.8489𝑦3
2 + 3.1748𝑦4

2,                                                                       (142) 

𝑚𝑎𝑥 ℎ4(𝑌)21.004 − 0.0097𝑦1 − 0.841𝑦2 − 0.4326𝑦3 + 1.1723𝑦4 + 0166𝑦1𝑦2 + 0.085𝑦1𝑦3 −

0.0001𝑦1𝑦4 + 0.0523𝑦2𝑦3  + 0.0002𝑦2𝑦4 + 0.0006𝑦3𝑦4 − 0.0022𝑦1
2 + 0.0035𝑦2

2 + 0.006𝑦3
2 −

0.0311𝑦4
2}},                                                                                  (143) 

at restrictions: 𝑦1 +  𝑦2 + 𝑦3 +  𝑦4 = 100,                                 (144) 

 21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.                     (145) 

Векторная задача математического программирования (140)-(145) представляет 

численную модель принятия оптимального решения структуры материала в условиях 

определенности и неопределенности в совокупности. 

5.1.6. 6 этап. Процесс принятия оптимального решения (выбора оптимальных 

параметров) структуры материала. Решение векторной задачи при равнозначных 

критериях (решение прямой задачи). 

Для формирования структуры материала на базе векторной задачи математического 

программирования с равнозначными критериями (140)-(145) представлены методы, 

основанные на аксиоматике нормализации критериев и принципе гарантированного 

результата, вытекающие из аксиомы 1 и принципа оптимальности 1.  

Методика решения представлена в виде ряда шагов.  

Шаг 1. Решение ВЗМП (127)-(131) по каждому критерию отдельно. Для решения 

используется функция fmincon(…) системы MATLAB, обращение к функции  fmincon(…) в 

[18, 19].  

Как результат расчета, по каждому критерию получаем точки оптимума: 𝑌𝑘
∗  и ℎ𝑘

∗ =

ℎ𝑘(𝑌𝑘
∗), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, K=4 – величины критериев - наилучшее решение по каждому критерию: 

Критерий 1: 𝑌1
∗ = {𝑦1 = 46.56, 𝑦2 = 43.23, 𝑦3 = 8.0, 𝑦4 = 2.2}, ℎ1

∗ = ℎ1(𝑌1
∗)  =  −387.99;   

Критерий 2: 𝑌2
∗ = {𝑦1 = 55.60, 𝑦2 = 34.19, 𝑦3 = 8.0, 𝑦4 = 2.2}, ℎ2

∗ = ℎ2(𝑌2
∗)  =  1361.41; 

Критерий 3: 𝑌3
∗ = {𝑦1 = 31.90, 𝑦2 = 59.00, 𝑦3 = 2.1, 𝑦4 = 7.0}, ℎ3

∗ =  ℎ3(𝑌3
∗)  =  −210.3;    

Критерий 4: 𝑌4
∗ = {𝑦1 = 36.70, 𝑦2 = 59.00, 𝑦3 = 2.1, 𝑦4 = 2.2}, ℎ4

∗ = ℎ4(𝑌4
∗)  =  30.714. 

Результат решения ВЗМП (127)-(131), ограничения (131) и точки оптимума 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗  

в координатах 𝑥1, 𝑥3 представлены на рис. 3. 

Шаг 2. Вычисляем наихудшую величину каждого критерия (антиоптимум): 𝑌𝑘
0 и ℎ𝑘

0 =

ℎ𝑘(𝑌𝑘
0), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, K=4. Для этого решается задача (127)-(131) для каждого критерия 𝑘 = 1, 𝐾1

̅̅ ̅̅ ̅̅  

на минимум, для каждого критерия 𝑘 = 1, 𝐾2
̅̅ ̅̅ ̅̅   на максимум. В результате получим: 𝑋𝑘

0 =

{𝑥𝑗 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}  - точка оптимума по соответствующему критерию, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ ; 𝑓𝑘
0 = 𝑓𝑘(𝑋𝑘

0)  – 

величина k-го критерия в точке, 𝑋𝑘
0, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, (верхний индекс ноль):  

𝑌1
0 = {𝑦1 = 31.9, 𝑦2 = 59.0, 𝑦3 = 2.1, 𝑦4 = 7.00}, ℎ1

0 = ℎ1(𝑌1
0) =  296.6;  

𝑌2
0 = {𝑦1 = 31.9, 𝑦2 = 59.0, 𝑦3 = 2.1, 𝑦4 = 7. }, ℎ2

0 =  ℎ2(𝑌2
0) =  −2458.5; 

𝑌3
0 = {𝑦1 = 78.16, 𝑦2 = 9.02, 𝑦3 = 8, 𝑦4 = 4.81}, ℎ3

0 = ℎ3(𝑌3
0) = 169.26;  

𝑌4
0 = {𝑦1 = 62.71, 𝑦2 = 22.9, 𝑦3 = 8, 𝑦4 = 6.39}, ℎ4

0 =  ℎ4(𝑌4
0) = −73.62. 
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Шаг 3. Системный анализ множества точек, оптимальных по Парето, (т.е. анализ по каждому 

критерию) реализуется. Для этого в точках оптимума 𝑌∗ = {𝑌1
∗, 𝑌2

∗, 𝑌3
∗, 𝑌4

∗}  определяются 

величины целевых функций 𝐻(𝑌∗) = ‖ℎ𝑞(𝑌𝑘
∗)‖

𝑞=1,𝐾̅̅ ̅̅̅

𝑘=1,𝐾̅̅ ̅̅̅
, 𝐷 = (𝑑1  𝑑2 𝑑3 𝑑4)𝑇- вектор отклонений 

по каждому критерию на допустимом множестве S: 𝑑𝑘 = ℎ𝑘
∗ − ℎ𝑘

0 , 𝑘 = 1,4̅̅ ̅̅ , и матрица 

относительных оценок:  

(𝑌∗) = ‖𝜆𝑞(𝑌𝑘
∗)‖

𝑞=1,𝐾̅̅ ̅̅̅

𝑘=1,𝐾̅̅ ̅̅̅
,  

где λ𝑘(𝑋) = (ℎ𝑘
∗ − ℎ𝑘

0)/𝑑𝑘, 

𝑑𝑘 = {91.4, −1097, 41.09, −42.9}. 

 

𝐻(𝑌∗) = ‖

388 1444 183.9 68.5
382 1361 177.3 72.1
296 2458 210.4 30.2
330 2210 208.0 30.7

‖, (𝑌∗) = ‖

1.0 0.924 0.356 0.1197
0.936 1.0 0.1968 0.036
0.0            0.0 1.0 1.011
0.366 0.2257 0.942 1.0

‖.           (146) 

Системный анализ величин критериев в относительных оценках в ВЗМП (141)-(145) 

показывает, что в точках оптимума 𝑌∗ = { 𝑌1
∗, 𝑌2

∗, 𝑌3
∗, 𝑌4

∗} (по диагонали) относительная оценка 

равна единице. Остальные критерии (132) (𝑋∗) = ‖𝜆𝑞(𝑋𝑘
∗)‖

𝑞=1,𝐾̅̅ ̅̅̅

𝑘=1,𝐾̅̅ ̅̅̅
значительно меньше 

единицы. Требуется найти такую точку (параметры), при которых относительные оценки 

наиболее близки к единице. На решение проблемы направлено решение -задачи - шаг 4, 5. 

Шаг 4. Формирование -задачи реализуется в два этапа:  

На 1-м этапе строится максиминная задача оптимизации с нормализованными 

критериями:  


𝑜  =  𝒎𝒂𝒙𝒀⋴𝑺𝒎𝒊𝒏𝒌⋴𝑲λ𝑘(𝑌), 𝐺(𝑌)0, 𝑌  0;                          (147) 

на 2-м этапе максиминная задача (147) преобразуется в стандартную задачу 

математического программирования (-задача):    

 

Рисунок 11 – Допустимое множество точек 𝑆 в координтах 𝑥1,𝑥3. Множество точек, 

оптимальных по Парето, 𝑆𝑜 𝑆, ограничено точками 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗, и локальное 𝑆1
𝑜 

между 𝑋1
∗, 𝑋13

𝑜∗, 𝑋𝑜, 𝑋12
𝑜 , 𝑋1

∗ в двухмерной системе координат {𝑥1,𝑥3}. 
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
𝑜  =  𝑚𝑎𝑥 ,                                             (148) 

с ограничениями    −
ℎ1(𝑌)−ℎ1

0

ℎ1
∗ −ℎ1

0   0,    −
ℎ3(𝑌)−ℎ3

0

ℎ3
∗ −ℎ3

0  0, 

 −
ℎ2(𝑌)−ℎ2

0

ℎ2
∗ −ℎ2

0   0,   −
ℎ4(𝑌)−ℎ4

0

ℎ4
∗ −ℎ4

0  0,                                (149) 

01,   21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0.  

                   𝑦1 +  𝑦2 +  𝑦3 +  𝑦4 = 100,                                   (150) 

Вектор неизвестных имеет размерность N+1: 𝒀 = {𝑦1, … , 𝑦𝑁, } ; функции 

ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌)  соответствуют (148)-(153) соответственно. Подставив числовые 

значения функций ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌), мы получим -задачу следующего вида:  


𝑜  =  𝑚𝑎𝑥 ,                                                                 (151) 

Ограничения       −
323.84−2.249𝑦1−3.49∗𝑥2 … −0.2434𝑦3

2−0.5026𝑦4
2−ℎ1

0

ℎ1
∗ −ℎ1

0  0,           (152) 

 −  
 110.22+0.7918𝑦1+1.73𝑦2− … +0.0335𝑦3

2+0.124𝑦4
2−ℎ3

0

𝑓3
∗−𝑓3

0  
  0,                 (153) 

 −
954.8+28.67𝑦1+37𝑦2− … +3.8489𝑦3

2+3.1748𝑦4
2−ℎ2

0

ℎ2
∗ −ℎ2

0  0,                     (154) 

 −
21−0.0097𝑦1−0.841𝑦2− … +0.006𝑦3

2−0.0311𝑦4
2−ℎ4

0

ℎ4
∗ −ℎ4

0  0,                    (155) 

01,   21  𝑦1  79, 5  𝑦2  59, 2.1  𝑦3  9.0, 2.2  𝑦4  7.0. 

  𝑦1 +  𝑦2 +  𝑦3 +  𝑦4 = 100,                             (156) 

Шаг 4. Решение  -задачи (151)-(155). Обращение к функции fmincon(…), [16]:  

[𝑋𝑜, 𝐿𝑜] = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(′𝑍_𝑇𝑒ℎ𝑛𝑆𝑖𝑠𝑡_4𝐾𝑟𝑖𝑡_𝐿′, 𝑋0, 𝐴𝑜, 𝑏𝑜, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏𝑜, 𝑢𝑏𝑜, 

′𝑍_𝑇𝑒ℎ𝑛𝑆𝑖𝑠𝑡_𝐿𝐶𝑜𝑛𝑠𝑡′, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠). 

В результате решения векторной задачи (140)-(145) при равнозначных критериях и 

соответствующей ей -задачи (151)-(156) получили: 

𝑿𝒐 = {𝑌𝑜, 𝑜} = {𝑌𝑜 = {𝑥1 = 43.9, 𝑥2 = 49.54, 𝑥3 = 4.348, 𝑥4 = 2.2, 𝑜 = 0.6087} ,  (157) 

точку оптимума 𝑿𝒐 – конструктивные параметры материала, которая представлена на рис. 3; 

ℎ𝑘(𝑌𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅- величины критериев (характеристик структуры материала):  

{ℎ1(𝑌𝑜) = 364.0, ℎ2(𝑌𝑜) = 1790.7, ℎ3(𝑌𝑜) =  194.3, ℎ4(𝑌𝑜) =  47.5}; (158) 

λ𝑘(𝑌𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅- величины относительных оценок  

{λ1(𝑌𝑜) =  0.7372, λ2(𝑌𝑜) =  0.6087, λ3(𝑌𝑜) = 0.6087, λ4(𝑌𝑜) = 0.6087};  (159) 

o=0.60870 – это максимальный нижний уровень среди всех относительных оценок, 

измеренный в относительных единицах: 𝜆𝑜 = 𝑚𝑖𝑛 (𝜆1(𝑌𝑜), 𝜆2(𝑌𝑜), 𝜆3(𝑌𝑜), 𝜆4(𝑌𝑜)) =  0.6087,  

o=  0.6087называют также гарантированным результатом в относительных единицах. 

𝜆𝑘(𝑌𝑜) и соответственно характеристики структуры материала  𝑓𝑘(𝑌𝑜) нельзя улучшить, не 

ухудшая при этом другие характеристики. 

В соответствии с теоремой c 1, в точке Xo критерии 2, 3 и 4 противоречивы. Это 

противоречие определяется равенством: λ2(𝑌𝑜) = λ3(𝑌𝑜) = λ4(𝑌𝑜) = λ𝑜 = 0.6087 , а 

остальные критерии неравенством {λ2(𝑋𝑜) =  0.7372} > λ𝑜. Теорема 1 служит основой для 

определения правильности решения векторной задачи. В ВЗМП, как правило, для двух 

критериев выполняется равенство: λ𝑜 = λ𝑞(𝑌𝑜) = λ𝑝(𝑌𝑜), 𝑞, 𝑝 Î 𝑲, 𝑋 Î 𝑆, (в нашем примере 

такие критерии 2, 3, 4), для других критериев определяется как неравенство. 
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5.1.7.  7 этап. Геометрической интерпретация результатов решения ВЗМП с 4 

параметрами и 4 критериями в двухмерную систему координат (c 2 параметрами) в 

относительных единицах.  

Для геометрической интерпретация результатов решения ВЗМП с 4 параметрами и 4 

критериями в двухмерную систему координат (c 2-мя параметрами) в относительных 

единицах введем изменения. В ВЗМП (140)-(145) параметры 𝑦1 и 𝑦3 рассматриваются как 

переменные, параметры 𝑦2  и 𝑦4  рассматриваются как постоянные. Присвоим постоянным 

параметрам размерность: 𝑦2 = 49.5492, 𝑦4 = 2.2  в соответствии с результатом решения 

ВЗМП (140)-(145) при равнозначных критериях, представленных в (157).  

В итоге ВЗМП (140)-(145) стала двухмерной.  

Представим в целом результаты решения с двумя переменными параметрами 𝑥1 и 𝑥3 

(двухмерная задача): 

Y =[Yopt(1,:)={46.5676   43.2324    8.0000    2.2000}, λ1(Y1𝑜𝑚𝑎𝑥) =0.5; 

     Yopt(2,:)= {55.6075   34.1925    8.0000    2.2000}, λ2(Y2𝑜𝑚𝑎𝑥) =0.6087; 

     Yopt(3,:)= {31.9000   59.0000    2.1000    7.0000}, λ3(Y3𝑜𝑚𝑎𝑥) = 0.6087; 

     Yopt(4,:)= {36.7000   59.0000    2.1000    2.2000},  λ4(Y4𝑜𝑚𝑎𝑥) = 0.7372; 

    Yo(1:4) = {43.9022   49.5492    4.3486    2.200}, λ(Yo) = 𝜆𝑜 = 0.5196.      (160) 

Характеристики материала в относительных единицах 𝜆1(𝑌), 𝜆2(𝑌), 𝜆3(𝑌), 𝜆4(𝑌) показаны на 

рис. 12 в трехмерном пространстве 𝑥1 𝑥3 и , где третья ось  - относительная оценка.  

В допустимом множестве точек S, образованных ограничениями (158)-(159), точки 

оптимума  𝑌1
∗, 𝑌2

∗, 𝑌3
∗, 𝑌4

∗  , объединенных в контур, представляют множество точек, 

оптимальных по Парето, 𝑺𝒐 𝑺, представлены на рис. 11. Координаты этих точек, а также 

характеристики материала в относительных единицах 𝜆1(𝑌), 𝜆2(𝑌), 𝜆3(𝑌), 𝜆4(𝑌) показаны на 

рис. 12 в трех мерном пространстве 𝑥1 𝑥2 и , где третья ось  - относительная оценка.  

5.1.8. 8 этап. Результаты решения Векторной Задачи Математического 

Программирования при равнозначных критериях - подготовка информации для принятия 

решений с приоритетом критерия. 

В результате решения ВЗМП при равнозначных критериях получили. 

 

Результаты решения Векторной Задачи Математического Программирования 

 

Рисунок 12 – Геометрическая интерпретация результатов решение -задачи  

в трехмерной системе координат 𝑥1 𝑥2 и   
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(Математическая модель Инженерной Системы - ИС) при равнозначных критериях 

1. Критерии (характеристики ИС), параметры в точке оптимума: 

Критерий 1: ℎ1
∗ = ℎ1(𝑌1

∗)  = −387.9; Параметры: 𝑌1
∗ = {𝑦1 = 46.56, 𝑦2 = 43.23, 𝑦3 = 8.0, 𝑦4 = 2.2} ; 

Критерий 2: ℎ2
∗ = ℎ2(𝑌2

∗)  = 1361.4; Параметры:  𝑌2
∗ = {𝑦1 = 55.60, 𝑦2 = 34.19, 𝑦3 = 8.0, 𝑦4 = 2.2}; 

Критерий 3: ℎ3
∗ =  ℎ3(𝑌3

∗)  = −210.3; Параметры: 𝑌3
∗ = {𝑦1 = 31.90, 𝑦2 = 59.00, 𝑦3 = 2.1, 𝑦4 = 7.0};   

Критерий 4: ℎ4
∗ = ℎ4(𝑌4

∗)  = 30.71;  Параметры:  𝑌4
∗ = {𝑦1 = 36.7, 𝑦2 = 59, 𝑦3 = 2.1, 𝑦4 = 2.2}; (161) 

2. Критерии (характеристики ИС), параметры в точке антиоптимума: 

Критерий 1: ℎ1
0 = ℎ1(𝑌1

0) =  296.6;    Параметры: 𝑌1
0 = {𝑦1 = 31.9, 𝑦2 = 59.0, 𝑦3 = 2.1, 𝑦4 = 7.00}; 

Критерий 2: ℎ2
0 =  ℎ2(𝑌2

0) = −2458.5; Параметры: 𝑌2
0 = {𝑦1 = 31.9, 𝑦2 = 59.0, 𝑦3 = 2.1, 𝑦4 = 7. }; 

Критерий 3: ℎ3
0 = ℎ3(𝑌3

0) = 169.26;   Параметры:  𝑌3
0 = {𝑦1 = 78.16, 𝑦2 = 9.02, 𝑦3 = 8, 𝑦4 = 4.81};  

Критерий 4:  ℎ4
0 = ℎ4(𝑌4

0) = −73.6;Параметры: 𝑌4
0 = {𝑦1 = 62.7, 𝑦2 = 22.9, 𝑦3 = 8, 𝑦4 = 6.39}; (162) 

3. Критерии (характеристики ИС) в относительных единицах в точке 𝒀𝒐: 

o=0.6087 – максимальный нижний уровень в относительных единицах 

𝛌𝒌(𝒀𝒐), 𝒌 = 𝟏, 𝑲̅̅ ̅̅ ̅- величины относительных оценок:  

{λ1(𝑌𝑜) =  𝟎. 𝟕𝟑𝟕𝟐, λ2(𝑌𝑜) =  𝟎. 𝟔𝟎𝟖𝟕, λ3(𝑌𝑜) = 𝟎. 𝟔𝟎𝟖𝟕, λ4(𝑌𝑜) = 𝟎. 𝟔𝟎𝟖𝟕};   (163) 

𝑿𝒐 = {𝑌𝑜, 𝑜} = {𝑌𝑜 = {𝑥1 = 43.9, 𝑥2 = 49.5, 𝑥3 = 4.34, 𝑥4 = 2.2, 𝑜 = 0.6087}. (164) 

4. Критерии (характеристики ИС) в физических единицах: 

𝒉𝒌(𝒀𝒐), 𝒌 = 𝟏, 𝑲̅̅ ̅̅ ̅- величины критериев (характеристик) в физических единицах:  

{ℎ1(𝑌𝑜) = 364.0, ℎ2(𝑌𝑜) = 1790.7, ℎ3(𝑌𝑜) =  194.3, ℎ4(𝑌𝑜) =  47.5};     (165) 

5. Информация об ИС в физических единицах для принятия решений с приоритетом 

критерия: 

1. 𝒉𝟏(𝒀) → 𝒎𝒂𝒙: ℎ1
∗ = ℎ1(𝑌1

∗)  = −387.9 ≤ 𝒉𝟏(𝒀𝒐) = 𝟑𝟔𝟒. 𝟎 ≤ ℎ1
0 = ℎ1(𝑌1

0) =  296.6;   

2. 𝒉𝟐(𝒀) → 𝒎𝒊𝒏 : ℎ2
∗ = ℎ2(𝑌2

∗)  = 1361.4 ≤ 𝒉𝟐(𝒀𝒐) = 𝟏𝟕𝟗𝟎. 𝟕 ≤ ℎ2
0 =  ℎ2(𝑌2

0) = −2458.5;  

3. 𝒉𝟑(𝒀) → 𝒎𝒂𝒙: ℎ3
∗ =  ℎ3(𝑌3

∗)  = −210.3 ≤ ℎ3(𝑌𝑜) =  194.3 ≤ ℎ3
0 = ℎ3(𝑌3

0) = 169.26;  

4. 𝒉𝟒(𝒀) → 𝒎𝒊𝒏: ℎ4
∗ = ℎ4(𝑌4

∗) = 30.71 ≤ ℎ4(𝑌𝑜) =  47.5 ≤ ℎ4
0 =  ℎ4(𝑌4

0) = −73.62; (166)   

Заключение по результатам решения векторной задачи математического 

программирования при равнозначных критериях. 

Мы представили методологию решения векторной задачи математического 

программирования при равнозначных критериях (характеристиках) на примере инженерной 

системы - материалы. В процессе решения задачи системе MATLAB нами представлена 

геометрическая интерпретация результатов решения в двухмерной системе координат. 

Результаты решения векторной задачи математического программирования с равнозначными 

критериями с четырьмя переменными совпадают с результатами решения векторной задачи с 

двумя переменными.   

Таким образом, впервые в отечественной и зарубежной практике показан переход и его 

геометрическая иллюстрация от N-мерного к двухмерному измерению функции в векторных 

задачах математического программирования с соответствующими ошибками линейной 

аппроксимации. Нами подготовлена информация для исследования и выбора оптимального 

решения при приоритете того или иного критерия (характеристики) инженерной системы. На 

решение этой проблемы направлена вторая часть работы. 

5.2.  Часть 2. Выбор оптимальных параметров инженерных систем в условиях 

неопределенности - с приоритетом критерия. 

5.2.1. 9 этап. Анализ, сравнение результатов решения векторной задачи при 

равнозначных критериях сложной инженерной системы (модели структуры материала) 

и подготовка к выбору оптимальных параметров по приоритетному критерию. 
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Сравним результаты решения векторной задачи математического программирования с 

равнозначными критериями (151)-(156) с четырьмя переменными 𝑦1, 𝑦2, 𝑦3  и 𝑦4  с 

результатами решения векторной задачи (151)-(156) с двумя переменными 𝑦1 и 𝑦3.   

Результаты решения четырехмерной ВЗМП (151)-(156) с переменными координатами 

{𝑦1 𝑦2 𝑦3 𝑦4}  представлены в (157), (158), (159), а результаты решения двухмерной ВЗМП с 

переменными координатами {𝑦1 𝑦3} представлены в (160). 

Результаты решения и сравнения исследуемых задач представлены в трехмерной 

системе координат 𝑥1 𝑥3 (обозначения: 𝑦1 𝑦3) и  на рис. 13.  

(Замечание. На рисунках 11, 12, 13, …: вектор параметров 𝒀 = {𝑦1, … , 𝑦𝑁, } заменен 

на 𝑿 = {𝑥1, … , 𝑥𝑁, } ; функции ℎ1(𝑌), ℎ2(𝑌), ℎ3(𝑌), ℎ4(𝑌)  заменены на функции 

𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋) в соответствии с программным обеспечением). 

На рис. 13 представлены точка оптимума в координатах 𝒙𝟏, 𝒙𝟑:  

𝑿𝒐 = {𝑌𝑜, 𝑜} = {𝑌𝑜 = {𝒙𝟏 = 𝟒𝟑. 𝟗, 𝑥2 = 49.54, 𝒙𝟑 = 𝟒. 𝟑𝟒𝟖, 𝑥4 = 2.2, 𝑜 = 0.6087} 

из (157); и относительная оценка:  

{λ1(𝑌𝑜) =  0.7372, 𝛌𝟐(𝒀𝒐) =  𝟎. 𝟔𝟎𝟖𝟕, 𝛌𝟑(𝒀𝒐) = 𝟎. 𝟔𝟎𝟖𝟕, λ4(𝑌𝑜) = 𝟎. 𝟔𝟎𝟖𝟕}  из (158) в 

тех же координатах 𝑥1 𝑥3. 

 

Рассмотрим, например, оптимальную точку 𝑋3
∗ . Функция λ3(𝑋)  сформирована из 

функции 𝑓3(𝑋)  с переменными координатами { 𝑥1 𝑥3} , с постоянными координатами 

{𝑥2=49.54, 𝑥4=2.2}, взятые из оптимальной точки 𝑋𝑜  (160). В точке 𝑋3
∗ относительная оценка 

𝛌𝟑(𝑿𝟑
∗ ) = 𝟎. 𝟔𝟒𝟒𝟏  – показана на рис. 13 черной точкой. Но мы знаем, что относительная 

оценка λ3(𝑋3
∗) полученная из функции 𝑓3(𝑋3

∗) на третьем шаге равна единице, обозначим ее 

как 𝝀𝟑
∆(𝑿𝟑

∗ ) = 𝟏 – показана на рис. 13 красной точкой. 

В итоге: во-первых, при равнозначных критериях координаты точек оптимума 𝑥1, 𝑥3: 

𝑿𝒐 = {𝑌𝑜, 𝑜} = {𝑌𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348, 𝑜 = 0.6087} - в двухмерной   

𝑿𝒐 = {𝑌𝑜, 𝑜} = {𝑌𝑜 = {𝑥1 = 43.9, 𝑥2 = 49.54, 𝑥3 = 4.348, 𝑥4 = 2.2, 𝑜 = 0.6087}  

в двухмерной, в четырёхмерной системе совпадают, покажем числовые значения точки 

оптимума {𝑌𝑜, 𝑜} на рис. 13;  

 

Рисунок 13 – Решение -задачи 

в трехмерной системе координат 𝑥1 𝑥3 (= 𝑦1 𝑦3) и . 
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во-вторых, в точке оптимума 𝑋3
∗  оптимальные величины критериев ℎ𝑘(𝑌𝑘

∗), 𝑘 = 3  и 

относительные оценки λ𝑘(𝑌𝑘
∗) = 0.6441, 𝑘 = 3 и 𝜆𝑘

∆(𝑋𝑘
∗) = 1, 𝑘 = 3 не совпадают. 

Разность между относительными оценками 𝜆3
∆ ( 𝑋3

∗ )=1 и λ3(𝑋3
∗) = 0.6441  является 

ошибкой ∆=0.3559 перехода от четырехмерной (а в общем случае N-мерной) к двухмерной 

системе измерений. Аналогично на рис. 13 показаны: 

точка 𝑋1
∗, соответствующие относительные оценки λ1(𝑋1

∗) = 1.1708, 𝜆1
∆(𝑋1

∗) = 1;  

точка 𝑋2
∗, соответствующие относительные оценки λ2(𝑋2

∗) = 1.1530, 𝜆2
∆(𝑋2

∗) = 1;  

точка 𝑋4
∗, соответствующие относительные оценки λ4(𝑋4

∗) = 1.0562, 𝜆4
∆(𝑋4

∗) = 1.  

5.2.2. 10 этап. Вывод из анализа: Информация об Инженерной Системе в 

физических единицах. Подготовка к геометрической интерпретации решения векторной 

задачи выбора оптимальных параметров по приоритетному критерию.  

Таким образом, по результатам решения векторной задачи математического 

программирования при равнозначных критериях мы сформулировали информацию: принятия 

управленческого решения для улучшения любого критерия (характеристики инженерной 

системы): ℎ𝑘(𝑌𝑘
∗) ≤ 𝒉𝒌(𝒀𝒐) ≤ ℎ𝑘(𝑌𝑘

0), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅.  

Информация об ИС в физических единицах для принятия решений с приоритетом 

критерия: 

1. 𝒉𝟏(𝒀) → 𝒎𝒂𝒙: ℎ1
∗ = ℎ1(𝑌1

∗)  = −387.9 ≤ 𝒉𝟏(𝒀𝒐) = 𝟑𝟔𝟒. 𝟎 ≤ ℎ1
0 = ℎ1(𝑌1

0) =  296.6;   

2.  𝒉𝟐(𝒀) → 𝒎𝒊𝒏  : ℎ2
∗ = ℎ2(𝑌2

∗)  = 1361.4  ≤ 𝒉𝟐(𝒀𝒐) = 𝟏𝟕𝟗𝟎. 𝟕 ≤ ℎ2
0 =  ℎ2(𝑌2

0) =

−2458.5;  

3. 𝒉𝟑(𝒀) → 𝒎𝒂𝒙: ℎ3
∗ =  ℎ3(𝑌3

∗)  = −210.3 ≤ ℎ3(𝑌𝑜) =  194.3 ≤ ℎ3
0 = ℎ3(𝑌3

0) = 169.26;  

4. 𝒉𝟒(𝒀) → 𝒎𝒊𝒏: ℎ4
∗ = ℎ4(𝑌4

∗) = 30.714 ≤ ℎ4(𝑌𝑜) =  47.5 ≤ ℎ4
0 =  ℎ4(𝑌4

0) = −73.62; 

При подготовке геометрической интерпретации решения векторной задачи выбора 

оптимальных параметров по приоритетному критерию используем рис. 13, удалив функции в 

относительных единицах 𝜆1(𝑌), 𝜆2(𝑌), 𝜆3(𝑌), 𝜆4(𝑌) и представим его на рис. 14. На рис. 14 

сформируем относительные оценки четырех критериев: λ𝑘(𝑌𝑘
∗),  𝜆𝑘

∆(𝑋𝑘
∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 

На третьем шаге решения ВЗМП с равнозначными критериями в (145) в точках оптимума 

𝑌1
∗, 𝑌2

∗, 𝑌3
∗, 𝑌4

∗ получены величины всех относительных оценок: 

𝐿(𝑌∗) = ‖‖

𝐿(𝑌1
∗)

𝐿(𝑌2
∗)

𝐿(𝑌3
∗)

𝐿(𝑌4
∗)

‖‖ = ‖

𝟏. 𝟎𝟎𝟎𝟎 0.9245 0.3560 0.1197
0.9367 𝟏. 𝟎𝟎𝟎𝟎 0.1968 0.0363

0.0            0.0 𝟏. 𝟎𝟎𝟎𝟎 1.011
0.3669 0.2257 0.9427 𝟏. 𝟎𝟎𝟎𝟎

‖.   

Представим из (146) величины относительных оценок в точке оптимума, например 𝑌2
∗: 

𝐿(𝑌2
∗) = {λ1(𝑌2

∗) = 0.9367, λ2(𝑌2
∗) = 1.0000, λ3(𝑌2

∗) = 0.1968, λ4(𝑌2
∗) = 0.0363}   

на рис. 6. Линейная функция, соединяющая точки 𝜆𝑜 = 0.60874  и 𝜆2
∆ ( 𝑋2

∗ )=1 в 

относительных единицах характеризует функцию 𝑓2(𝑋)  в относительных единицах в 

четырехмерном измерении параметров 𝑥1, … , 𝑥4 . Эта линейная функция представляет 

геометрическую интерполяцию функций 𝑓2(𝑋) в относительных единицах из N-мерного (4-

мерного) в двухмерную систему координат.  
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Аналогично исследуются все функции (критерии) инженерной системы. 

В целом на рис. 14 в точке 𝑋2
∗ показана геометрическая (линейная) интерполяция всех 

функций (критериев): 

𝑓1(𝑋) и соответствующая относительная оценки 𝜆1
∆(𝑋2

∗) = 0.9367;  

𝑓2(𝑋) и соответствующая относительная оценки 𝜆2
∆(𝑋2

∗) = 1.0;  

𝑓3(𝑋) и соответствующая относительная оценки 𝜆3
∆(𝑋2

∗) = 0.1968;  

𝑓4(𝑋) и соответствующая относительная оценки 𝜆4
∆(𝑋2

∗) = 0.0363.  

На рис. 14 также показаны координаты точки оптимума: 

𝑿𝒐 = {𝑌𝑜, 𝑜} = {𝑌𝑜 = {𝑥1(𝑋) 

= 43.9, 𝑥3(𝑌) = 4.348, 𝑜(𝑌𝑜) = 0.6087} 

и координаты относительной оценки 𝜆3
∆(𝑋2

∗) = 0.1968: 

{𝒀𝒐 = {𝑥1(𝑋) = 55.6075, 𝑥3(𝑌) = 8, 𝜆3
∆(𝑍) = 0.1968}. 

Результаты решения 𝑿𝒐 и 𝒀𝒐 показывают, что математические результаты полностью 

совпадают с геометрическими.  

В дальнейшем используем рис. 14 как структуру, на которую наложена информация 

геометрической интерпретации решения векторной задачи выбора оптимальных параметров 

по приоритетному критерию 𝑞Î𝐾. 

В последующих разделах 11.k1, 12.k2, 13.k3, 14.k4 проведено исследование, выбор 

оптимальных параметров сложной инженерной системы (структура материала), а также 

геометрическая интерпретация результатов решения по каждому приоритетному критерию, 

которые обозначены k1, k2, k3, k4.   

Каждый раздел исследования: выбора параметров и геометрическая интерпретация 

результатов решения по соответствующему критерию включает следующую 

последовательность работ: 

1. Решение векторной задачи - модели сложной инженерной системы (структуры 

материала) при заданном приоритете первого критерия в многомерной математике; 

2. Выбор численной величины исследуемого (приоритетного) критерия; 

3. Решение векторной задачи с выбранной величиной критерия (выбор параметров); 

 

Рис. 14. -задача в системе координат 𝑥1 𝑥3 (= 𝑦1 𝑦3) и . Результаты решения 

λ1(𝑌1
∗) = λ2(𝑌2

∗) = λ3(𝑌3
∗) = λ4(𝑌4

∗) = 1; 𝐿(𝑌2
∗) = {λ1(𝑌2

∗), λ2(𝑌2
∗), λ3(𝑌2

∗), λ4(𝑌2
∗). 
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4. Геометрическая интерпретация результатов решения векторной задачи в 

относительных и физических единицах. 

5.2.3. 11.k1 этап. Исследование, выбор оптимальных параметров сложной 

инженерной системы (структура материала) по отдельному (первому) приоритетному 

критерию, геометрическая интерпретация результатов решения. 

1.k1. Решение векторной задачи - модели сложной инженерной системы (структуры 

материала) при заданном приоритете первого критерия в многомерной математике.  

Как правило, лицом, принимающим решения, является конструктор системы. 

Шаг 1. Решается векторная задачи при равнозначных критериях. Решения векторной 

задачи представлено на стадии 4. Численные результаты решения векторной задачи 

представлены выше. Точки, оптимальные по Парето 𝑺𝒐𝑺 находится между оптимальными 

точками 𝑋1
∗ 𝑋13

𝑜  𝑋3
∗ 𝑋34

𝑜  𝑋4
∗ 𝑋42

𝑜 𝑋2
∗ 𝑋21

𝑜  𝑋1
∗. Проведем анализ множества точек Парето 𝑺𝒐𝑺. Для 

этой цели мы соединим вспомогательные точки: 𝑋13
𝑜  𝑋34

𝑜  𝑋42
𝑜  𝑋21

𝑜  с точкой Xo, которая условно 

представляет центр множества Парето. 

 Как результат решения получили четыре подмножеств точек 𝑋Î𝑺𝑞
𝑜𝑺𝒐𝑺, 𝑞 = 1,4̅̅ ̅̅ . 

Подмножество точек 𝑺𝟏
𝒐𝑺𝒐𝑺 выделенное точками 𝑋1

∗ 𝑋13
𝑜  𝑋𝑜𝑋12

𝑜  𝑋1
∗, характеризуется тем, 

что относительная оценка 𝜆1 ≥ 𝜆2, 𝜆3, 𝜆4 , 4, то есть в поле первого критерия 𝑺𝟏
𝒐  имеет 

приоритет над остальными. Аналогично 𝑺𝟐
𝒐, 𝑺𝟑

𝒐, 𝑺𝟒
𝒐- подмножества точек, характеризуется тем, 

что второй, третий и четвертый критерий имеет приоритет над другими соответственно. 

Множество точек, оптимальных по Парето, обозначим: 𝑺𝒐 = 𝑺𝟏
𝒐𝑺𝟐

𝒐𝑺𝟑
𝒐𝑺𝟒

𝒐. Геометрическая 

интерпретация координат всех полученных точек и относительные оценки представлены в 

двумерном пространстве {𝑥1 𝑥3} на рис. 11. Эти координаты показаны в трех измеренных 

пространствах {𝑥1 𝑥3 } на рис. 12, где третья ось - относительная оценка.  

Ограничения на рис. 12 снижены до -0,5 (чтобы были видимы ограничения). Полученная 

информация является основой для дальнейшего исследования структуры множества Парето.  

Анализируем, если результаты решения векторной задачи с равнозначными критериями 

не удовлетворяют лицо, принимающее решение, то выбор оптимального решения 

осуществляется из какого-либо подмножества точек 𝑺𝟏
𝒐, 𝑺𝟐

𝒐, 𝑺𝟑
𝒐, 𝑺𝟒

𝒐 . Эти подмножества точек 

Парето показаны на рис. 12 в виде функций 𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋). 

Шаг 2. Выбор приоритетного критерия 𝑞 ∈ 𝑲. 

Из теоремы 1 известно, что в оптимальной точке 𝑋𝑜  всегда имеется два наиболее 

противоречивых критерия, 𝑞 ∈ 𝑲 и 𝑝 ∈ 𝑲, для которых выполняется точное равенство: 

 λ𝑜 = λ𝑞(𝑋𝑜) = λ𝑝(𝑋𝑜), 𝑞, 𝑝 ∈ 𝑲, 𝑋Î𝑺,                       (167) 

а для остальных выполняется неравенства: λ𝑜 ≤ λ𝑘(𝑋𝑜), ∀𝑘 ∈ 𝑲, 𝑞 ≠ 𝑝 ≠ 𝑘. 

В модели структуры материала (157)-(161) и соответствующей -задачи (170)-(175) 

такими критериями являются второй и третий: λ𝑜 = λ2(𝑋𝑜) = λ3(𝑋𝑜) = 0.6087, т.е. 

выполняется числовая симметрия. Из этой пары λ𝑜 = λ2(𝑋𝑜) = λ3(𝑋𝑜) =0.6087 

противоречивых критериев выбирается критерий, который ЛПР хотел бы улучшить. Такой 

критерий называется «приоритетным критерием», обозначим его 𝑞 = 3 ∈ 𝑲. Этот критерий 

исследуется во взаимодействии с первым критерием 𝑞 = 1 ∈ 𝑲.  

Выбор приоритетного критерия: 

На дисплей выдается общая информация для принятия решений: 

Критерии в точке оптимума 𝑋𝑜: FXo =363.968 1790.681 194.2795   47.5045.        (168) 

Относительные оценки в 𝑋𝑜: LXo =0.73718     0.60874     0.60874     0.60874.  (169) 

Антиоптимум: 𝑌1
0 = {𝑦1 = 31.9, 𝑦2 = 59, 𝑦3 = 2.1, 𝑦4 = 7.0}, ℎ1

0 = ℎ1(𝑌1
0) =  296.6.  
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ВЫВОД: Критерии 2, 3, 4 наиболее противоречивы, из них выбираем приоритетный.  

В данном разделе исследуется первый критерий (функция) 𝑞 = 1 ∈ 𝑲 

Выдается сообщение на дисплей:  

q=input('Введите приоритетный критерий (номер) q= ') – Ввели критерий q=1.  

Шаг 3. Формируются числовые пределы изменения величины приоритета критерия  

𝑞 = 1Î𝑲 . Для приоритетного критерия 𝑞 = 1Î𝑲  определяются изменения числовых 

пределов в натуральных единицах при переходе из точки оптимума 𝑋𝑜  (172) в точку 𝑋𝑞
∗ , 

полученную на первом шаге. Информационные данные о критерии q=1 выдаются на дисплей:  

𝑓𝑞(𝑋𝑜) =  363.9686 𝑓𝑞(𝑋) 387.9904 =  𝑓𝑞(𝑋𝑞
∗), 𝑞 = 1 ∈ 𝑲.                 (170) 

Аналогично, в относительных единицах критерий q=1 изменяется в следующих 

пределах: 𝑞(𝑋𝑜) =  0.7372 𝑞(𝑋) 1.0 =  𝑞(𝑋𝑞
∗), 𝑞 = 1 ∈ 𝑲.  

Эти данные анализируется.   

Шаг 4. Определяется величина приоритетного критерия qÎK. (Decision-making). 

На сообщение: «Введите величину приоритетного критерия fq=» - вводим, например, fq=375. 

Шаг 5. Для fq=375 вычисляется относительная оценка.  

Для приоритетного критерия 𝑓𝑞 = 375 вычисляется относительная оценка: 

λ𝑞 =
𝑓𝑞−𝑓𝑞

0 

𝑓𝑞
∗−𝑓𝑞

0 =  
375−296.6

387.9904−296.6
 =  0.8579, 

которая при переходе от точки 𝑋𝑜 к точке 𝑋𝑞
∗ лежит в пределах:  

𝑞(𝑋𝑜) =  0.7372 𝑞(𝑋) = 0.8579 1.0 =  𝑞(𝑋𝑞
∗), 𝑞 = 1 ∈ 𝑲 .               (171) 

Шаг 6. Вычислим коэффициент линейной аппроксимации 

Предполагая линейный характер изменения критерия 𝑓𝑞(𝑋) в (179) и соответственно 

относительной оценки λ𝑞 в (150), используя стандартные приемы линейной аппроксимации, 

вычислим коэффициент пропорциональности между λ𝑞(𝑋𝑜), λ𝑞, который назовем : 

 =  
λ𝑞−λ𝑞(𝑋𝑜)

λ𝑞(𝑋𝑞
∗)−λ𝑞(𝑋𝑜)

=
0.7489−0.6087

1−0.6087
= 0.3558, 𝑞 = 3Î𝑲.                        (172) 

Шаг 7. Определяются координаты приоритета критериев с размерностью 𝑓𝑞. 

Предполагаем линейный характер изменения вектора 𝑋𝑞 = {𝑥1  𝑥2 𝑥3  𝑥4} , 𝑞 = 1 

определим координаты для точки c размерностью 𝑓𝑞 = 375 с относительной оценкой (171):  

𝑥𝜆=0.74
𝑞=3

= {𝑥1 = 𝑋𝑜(1) + (𝑋𝑞
∗(1) − 𝑋𝑜(1)), 

𝑥2 = 𝑋𝑜(2) +   (𝑋𝑞
∗(2) − 𝑋𝑜(2)), 

𝑥3 = 𝑋𝑜(3) +   (𝑋𝑞
∗(3) − 𝑋𝑜(3)), 

𝑥4 = 𝑋𝑜(4) +   (𝑋𝑞
∗(4) − 𝑋𝑜(4))},                            (173) 

 где 𝑋𝑜 = {𝑥1 = 43.9, 𝑥2 = 49.54, 𝑥3 = 4.348, 𝑥4 = 2.2}, 

     𝑋1
∗ = {𝑥1 = 46.56, 𝑥2 = 59.00, 𝑥3 = 2.1, 𝑥4 = 7.0}. 

Как результат решения мы получим точку с координатами: 

𝑋𝑞 = {𝑥1 = 45.1262, 𝑥2 = 46.6484, 𝑥3 = 6.0254, 𝑥4 = 2.2000}}.               (174) 

Шаг 8. Формирование главных показателей точки 𝑋𝑞. 

В полученной точке 𝑋𝑞, вычислим: 

все критерии в натуральных единицах 𝑓𝑘(𝑋𝑞) = {𝑓𝑘(𝑋𝑞), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}:   
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 𝑓𝑘(𝑋𝑞=1) = {𝑓1(𝑋𝑞) =  376.6, 𝑓2(𝑋𝑞) = 1618.4, 𝑓3(𝑋𝑞) = 189.3, 𝑓4(𝑋𝑞) = 57.3};        (175) 

все относительные оценки критериев: 
𝑞 = {𝜆𝑘

𝑞
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅, 𝑘(𝑋𝑞) =

𝑓𝑘(𝑋𝑞)−𝑓𝑘
0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅:  

𝑘(𝑋𝑞) = {1(𝑋𝑞) = 0.8759,2(𝑋𝑞) = 0.7657, 3(𝑋𝑞) =  0.4868,4(𝑋𝑞) = 0.3815};  (176) 

минимальная относительная оценка:  min(𝑋𝑞) = min
𝑘∈𝐾

(𝑘(𝑋𝑞)) =  0.3815. 

𝑃𝑞 = [𝑝1
1 = 1.0, 𝑝2

1 =  1.1438, 𝑝3
1 = 1.7991, 𝑝4

1  = 2.2956]; 

вектор приоритетов 𝑃𝑞(𝑋) = {𝑝𝑘
𝑞

=
𝜆𝑞(𝑋𝑞)

𝜆𝑘(𝑋𝑞)
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}: 

𝜆𝑘(𝑋𝑞) ∗ 𝑃𝑞 = {𝑝1
1 ∗ 1(𝑋𝑞) = 0.8759,   𝑝2

1 ∗ 2(𝑋𝑞) = 0.8759, 𝑝3
1 ∗ 3(𝑋𝑞) = 0.8759 , 

 𝑝4
1 ∗ 4(𝑋𝑞) = 0.8759} 

минимальная относительная оценка:  


𝑜𝑜 = min (𝑝1

31(𝑋𝑞), 𝑝2
32(𝑋𝑞), 𝑝3

33(𝑋𝑞), 𝑝4
34(𝑋𝑞))  = 0.8759 

Аналогично получены другие точки из области Парето 𝑿𝒕
𝒐 = {𝜆𝑡

𝑜, 𝑋𝑡
𝑜}Î𝑺𝑜. 

2.k1. Анализ результатов решения векторной задачи - модели инженерной системы 

при заданном приоритете первого критерия.  

Рассчитанная в (175) величина первого критерия при заданном приоритете 

𝑓𝑞(𝑋𝑡
𝑜) = 376.6, 𝑞 = 1Î𝑲, 𝑞Î𝑲 обычно не равна заданной 𝑓𝑞 = 375. Ошибка выбора 𝑓𝑞 =

|𝑓𝑞(𝑋𝑡
𝑜) − 𝑓𝑞| = |376.6 − 375| = 1.6 определяется ошибкой линейной аппроксимации: 

 𝑓𝑞% =  0.5%.  

Если ошибка 𝑓𝑞 = |𝑓𝑞(𝑋𝑡
𝑜) − 𝑓𝑞| = |376.6 − 375| = 1.6 , которая измерена в 

натуральных единицах или в процентах 𝑓𝑞% =
𝑓𝑞

𝑓𝑞
∗ 100 =  0.05% , больше заданной 

𝑓,𝑓𝑞 > 𝑓, то переходим к шагу 2, если 𝑓𝑞 ≤ 𝑓, то вычисления завершаются. Конец. 

При моделировании могут быть изменены параметрические ограничения (161) и 

функции (160), т. е. получено некоторое множество оптимальных решений. Из этого 

множества оптимальных решений выбираем окончательный вариант.  

В примере окончательный вариант включает параметры:  

 𝑋𝑜 = {𝑋𝑜, 𝑜} = {𝑋𝑜 = {43.9, 𝑥2 = 49.54, 𝑥3 = 4.348, 𝑥4 = 2.2}, 𝑜 = 0.6087};  

параметры структуры материала при заданном приоритете критерия:  

q=1: 𝑋𝑞 = {𝑥1 = 45.1262, 𝑥2 = 46.6484, 𝑥3 = 6.0254, 𝑥4 = 2.2000}.  

3.k1. Геометрическая интерпретация результатов решения векторной задачи 

выбора оптимальных параметров по первому приоритетному критерию в относительных 

единицах. 

Для геометрической интерпретации результатов решения векторной задачи выбора 

оптимальных параметров решения векторной задачи по первому приоритетному критерию в 

относительных единицах сформируем рис. 14.k1.  

Аналогично рис. 14, сформируем относительные оценки четырех критериев в точке 

оптимума 𝑌𝑘
∗   λ𝑘(𝑌𝑘

∗), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  (черный цвет) и 𝜆𝑘
∆(𝑋𝑘

∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  (красный цвет) и 

представим их рис. 14.k1.  
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На третьем шаге решения ВЗМП с равнозначными критериями в (176) в точках оптимума 

𝑌1
∗, 𝑌2

∗, 𝑌3
∗, 𝑌4

∗ получены величины всех относительных оценок: 

𝐿(𝑌∗) = ‖‖

𝐿(𝑌1
∗)

𝐿(𝑌2
∗)

𝐿(𝑌3
∗)

𝐿(𝑌4
∗)

‖‖ = ‖

1.0000 0.9245 0.3560 0.1197
0.9367 1.0000 0.1968 0.0363

0.0            0.0 1.0000 1.011
0.3669 0.2257 0.9427 1.0000

‖. 

На рис. 14.k1 λ1(𝑌1
∗) = 1.0000 обозначена как 𝜆2

∆(𝑋2
∗)=1. 

Линейная функция, соединяющая точки 𝜆(𝑋𝑜) = 0.7372 и 𝜆1
∆(𝑋1

∗)=1 в относительных 

единицах характеризует функцию 𝑓1(𝑋)  в относительных единицах в четырехмерном 

измерении параметров 𝑥1, … , 𝑥4 . Эта линейная функция представляет геометрическую 

интерполяцию функций 𝑓1(𝑋)  в относительных единицах из N-мерного (4-мерного) в 

двухмерную систему координат. Аналогично исследуются все функции (критерии). В целом 

на рис. 14.k1 в точке 𝑋1
∗  показана геометрическая (линейная) интерполяция всех функций 

(критериев): 

𝑓1(𝑋) и соответствующая относительная оценки 𝜆1
∆(𝑋1

∗) = 1.0;  

𝑓2(𝑋) и соответствующая относительная оценки 𝜆2
∆(𝑋1

∗) = 0.92451;  

𝑓3(𝑋) и соответствующая относительная оценки 𝜆3
∆(𝑋1

∗) = 0.35605;  

𝑓4(𝑋) и соответствующая относительная оценки 𝜆4
∆(𝑋1

∗) = 0.11974.  

Относительные оценки с приоритетом первого критерия в точке оптимума 𝑋𝑞=1 

λ𝑘(𝑋𝑞=1) =
𝑓𝑘(𝑋𝑞=1)−𝑓𝑘

0

𝑓𝑘
∗−𝑓𝑘

0 , 𝑘 = 1, 𝐾̅̅ ̅̅ ̅: λ𝑘(𝑋𝑞=1) = {1(𝑋𝑞=1) = 0.87586,2(𝑋𝑞=1) =

0.76574, 3(𝑋𝑞=1) =  0.48683,4(𝑋𝑞=1) = 0.38154};  

Результаты решения показывают, что математические результаты полностью совпадают 

с геометрическими. 

 

Рисунок 14 – k1. -задача в системе координат 𝑥1 𝑥3 . Результаты решения: 

 𝜆𝑘
∆(𝑋𝑘

∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; относительные оценки четырех критериев  

с приоритетом первого критерия в точке оптимума 𝑋𝑞=1: λ𝑘(𝑋𝑞=1), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ 
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 4.k1. Геометрическая интерпретация результатов решения ВЗМП (функций: 

𝑓1(𝑋), … , 𝑓4(𝑋) ) с приоритетом первого критерия – модели структуры материала при 

проектировании в трехмерной системе координат в физических единицах. 

Исходной информацией для геометрической интерпретации результатов решения 

векторной задачи (ВЗМП) с приоритетом первого критерия являются: 

параметры точки оптимума при равнозначных критериях: 

 𝑿𝒐 = {𝑋𝑜, 𝑜} = {𝑌𝑜 = {𝑥1 = 43.9, 𝑥2 = 49.54, 𝑥3 = 4.348, 𝑥4 = 2.2}, 𝑜 = 0.6087} ,  

рассчитанной на пятом шаге алгоритма в двухмерной системе координат 𝑥1, 𝑥3 (см. Рис. 11) 

и представленной в трехмерной системе координат 𝑥1, 𝑥3 и   в относительных единицах на 

рис. 12, 13, 14 при проектировании.  

Исследуем и представим параметры последовательно для каждой характеристики 

структуры материала (критерия): 𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋), 𝑓4(𝑋) в физических единицах.  

1. Геометрическая интерпретация результатов решения ВЗМП с приоритетом 

первого критерия – первой характеристики 𝑓1(𝑋)  при проектировании в физических 

единицах. 

На Рис. 15.k1 исследованы: точки оптимума 𝑋1
∗ , 𝑋𝑞=1 , с соответствующими 

относительными оценками  λ1(𝑋1
∗) , λ1(𝑋𝑞=1) . Также исследованы линейные функции в 

координатах: 𝜆𝑜 − λ1(𝑋𝑞=1)  и  𝜆𝑜 − 𝜆1
∆ ( 𝑋1

∗ ) в относительных единицах, которые 

характеризует функцию 𝑓1(𝑋) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. 

Первая характеристика структуры материала ℎ1(𝑋)  (170) сформирована в 6.1.4:  

max ℎ1(𝑋)323.84 − 2.25𝑦1 − 3.49𝑦2 + 10.72𝑦3  + 13.124𝑦4 + 0.0968𝑦1𝑦2 − 0.062𝑦1𝑦3 −

0.169𝑦1𝑦4  + 0.0743𝑦2𝑦3 − 0.1𝑦2𝑦4 −  0.0036𝑦3𝑦4 + 0.0143𝑦1
2 + 0.0118𝑦2

2 − 0.2434𝑦3
2 −

0.5026𝑦4
2,     

Представим геометрическую интерпретацию функции ℎ1(𝑌) в физических единицах с 

переменными координатами {𝑦1 𝑦3} и с постоянными координатами {𝑦2 = 49.54, 𝑦4 = 2.2} 

на рис. 15.k1.  

Координаты точки и функция первого критерия на максимум: 

 𝑌1
∗ = {𝑦1 = 46.56, 𝑦2 = 43.23, 𝑦3 = 8.0, 𝑦4 = 2.2}, ℎ1

∗ = ℎ1(𝑌1
∗)  = −387.9  при расчете 

по четырем переменным. На рисунке обозначена как 𝑓1
(𝑋1

∗)  = −387.9; 

 𝑌1
∗ = {𝑦1 = 46.5676, 𝑦3 = 8.0} (на рис. 15.k1 обозначена как 𝑋1

∗). В двухмерной системе 

координат 𝑦1, 𝑦3  величина целевой функции равна ℎ1
∗ = 𝑓1(𝑋1

∗) = 403.6 . (Черный цвет). В 

системе MANLAB обозначено как ℎ1
∗=Z=402.666. 

Координаты точки и функция первого критерия на минимум: 

В точке 𝑋1
0 = {𝑥1 = 31.9, 𝑥3 = 2.1} величина целевой функции 𝐹1

0=𝑓1(𝑋1
𝑜) = 303.66.  

Величина целевой функции в четырехмерной системе координат 𝑓1
(𝑋1

𝑜) = 296.59.  

Координаты точки и функция первого критерия при равнозначных критериях: 

Координаты точки 𝑋𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348} . Величина целевой функции 𝑓1(𝑋𝑜) = 

363.96.  Относительная оценка с приоритетом первого критерия в точке оптимума 𝑋𝑞=1 : 

λ1(𝑋𝑞=1) =
𝑓1(𝑋𝑞=1)−𝑓1

0

𝑓1
∗−𝑓1

0 = 0.87586 . В физических единицах величина первого критерия с 

приоритетом в точке оптимума 𝑋𝑞=1 равна 𝑓1(𝑋𝑞=1) = 376.64 близка к заданной 𝑓1(𝑋𝑞=1) =

375 (Показана фиолетовым цветом). 



Раздел журнала: Математические и естественные науки 

Направление исследования: Физико-математические науки 

 

Международный научный журнал "Вектор научной мысли" №2(31) Февраль 2026 

www.vektornm.ru | 8 (812) 905 29 09  |  info@vektornm.ru 

Линейная функция, соединяющая точки 𝑓1(𝑋𝑜)  и 𝑓1
∆ ( 𝑋1

∗ ) в физических единицах 

характеризует функцию 𝑓1(𝑋) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. 

 

А в целом отрезки 𝑓1
∆(𝑋1

∗)  - 𝑓1(𝑋𝑜) - 𝑓1
∆ ( 𝑋1

0 ) представляют геометрическую 

интерпретацию функции 𝑓1(𝑋) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. 

2. Геометрическая интерпретация результатов решения ВЗМП – второй 

характеристики 𝑓2(𝑋2,𝑞=1) с приоритетом первого критерия - структуры материала при 

проектировании в физических единицах. 

На Рис. 16.k1 исследованы: точки оптимума 𝑋2
∗ , 𝑋2,𝑞=1 , с соответствующими 

относительными оценками  λ2(𝑋2
∗)  λ2(𝑋2,𝑞=1) , а также линейные функции 𝜆𝑜λ2(𝑋2,𝑞=1) −

𝜆2
∆ ( 𝑋2

∗ ) 𝜆𝑜  в относительных единицах, которые характеризует функцию 𝑓2(𝑋2,𝑞=1)  в 

четырехмерном измерении параметров 𝑥1, … , 𝑥4. 

Вторая характеристика структуры материала ℎ2(𝑋) (172) сформирована в 4.1.4: 

𝑚𝑖𝑛 𝑓2(𝑋)795.72 +23.89𝑥1 +30.866𝑥2  -25.8586𝑥3  -45.0026𝑥4  -0.7683𝑥1𝑥2  +0.4703𝑥1𝑥3 

+0.7472𝑥1𝑥4-0.1283𝑥2𝑥3+0.3266𝑥2𝑥4-0.0112𝑥3𝑥4+0.0398𝑥1
2+0.0365𝑥2

2 +3.2𝑥3
2+2.6457𝑥4

2. 

Представим геометрическую интерпретацию функцию ℎ2(𝑋) в физических единицах с 

переменными координатами {𝑥1 𝑥3} и с постоянными координатами {𝑦2 = {49.54, 𝑦4 = 2.2}, 

взятые из оптимальной точки 𝑌𝑜  (160) на рис. 16.k1. 

Координаты точки и функция второго критерия на оптимум (минимум): 

𝑌2
∗ = {𝑦1 = 55.60, 𝑦2 = 34.19, 𝑦3 = 8.0, 𝑦4 = 2.2}, ℎ2

∗ = ℎ2(𝑋2
∗)  = 1361.4  

при расчете по четырем переменным. На рисунке обозначена как 𝑓2
∆(𝑋2

∗)  = 1361.41. 

В системе MATLAB обозначено как ℎ2
∗=Z=1361.42. 

𝑌2
∗  = {𝑥1 = 55.6, 𝑥3 = 8.0} (на рис. 16.k1 обозначена как 𝑋2

∗ ). В двухмерной системе 

координат 𝑦1, 𝑦3 величина целевой функции равна ℎ2
∗=𝑓2(𝑋2

∗) = 1193.56. (Черный цвет).  

Координаты точки минимума (Наихудшее решение – максимальное) в точке 𝑋2
0  =

{𝑥1 = 31.9, 𝑥3 = 2.1} величина целевой функции 𝐹2
0=𝑓2(𝑋2

𝑜) = 2207.2.  

Величина целевой функции в четырехмерной системе координат 𝑓2
(𝑋2

𝑜) = 2458.5.  

 

Рисунок 15 – k1. Функция 𝑓1(𝑋) с приоритетом первого критерия  

в двухмерной системе координат 𝑥1 𝑥3, геометрическая интерпретация функции 𝑓1(𝑋)  

в системе координат 𝑥1 𝑥2 𝑥3 𝑥4 
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Координаты точки и функция второго критерия при равнозначных критериях: 

Координаты точки 𝑋𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348}. Величина целевой функции 𝑓2(𝑋𝑜) = 

1790.68.  

Относительная оценка с приоритетом первого критерия в точке оптимума 𝑋𝑞=1  второго 

критерия: λ2(𝑋𝑞=1) =
𝑓2(𝑋𝑞=1)−𝑓2

0

𝑓2
∗−𝑓2

0 = 0. 76574 .  В физических единицах величина второго 

критерия с приоритетом в точке оптимума 𝑋𝑞=1  равна 𝑓2(𝑋2,𝑞=1) = 1618.43 . (Показана 

фиолетовым цветом). 

 

Линейная функция, соединяющая точки 𝑓2(𝑋𝑜)  и 𝑓2
∆ ( 𝑋2

∗ ) в физических единицах 

характеризует функцию 𝑓2(𝑋) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. А в целом 

отрезки 𝑓2
∆(𝑋2

∗)  - 𝑓2(𝑋𝑜) - 𝑓2
∆ ( 𝑋2

0 ) представляют геометрическую интерполяцию функции 

𝑓2(𝑋) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. 

3. Геометрическая интерпретация результатов решения ВЗМП – третьей 

характеристики 𝑓3(𝑋3,𝑞=1)  с приоритетом первого критерия - структуры материала при 

проектировании в физических единицах.  

На Рис. 17.k1 исследованы: точки оптимума 𝑋3
∗ , 𝑋3,𝑞=1 , с соответствующими 

относительными оценками  λ3(𝑋3
∗)  λ3(𝑋3,𝑞=1) , а также линейные функции 𝜆𝑜λ3(𝑋3,𝑞=1) −

𝜆3
∆ ( 𝑋3

∗ ) 𝜆𝑜  в относительных единицах, которые характеризует функцию 𝑓3(𝑋3,𝑞=1)  в 

четырехмерном измерении параметров 𝑥1, … , 𝑥4. 

Третья характеристика структуры материала ℎ3(𝑋) (171) сформирована в 6.1.4:   

𝑚𝑎𝑥 ℎ3(𝑌)110.22 + 0.7918𝑦1 + 1.73𝑦2 − 0.3713𝑦3 − 2.20𝑦4 − 0.0132𝑦1𝑦2 −

0.008𝑦1𝑦3 + 0.0193𝑦1𝑦4 − 0.0172𝑦2𝑦3 +  0.0161𝑦2𝑦4 − 0.0006𝑦3𝑦4 − 0.0004𝑦1
2 −

0.0002𝑦2
2 + 0.0335𝑦3

2 + 0.124𝑦4
2}. 

 

Рисунок 16 – k1. Функция 𝑓2(𝑋) с приоритетом первого критерия  

в двухмерной системе координат 𝑥1 𝑥3, геометрическая интерпретация функции 𝑓2(𝑋2,𝑞=1) 

– координаты 𝑥1 𝑥2 𝑥3 𝑥4. 
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Представим геометрическую интерпретацию функции ℎ3(𝑋) в физических единицах с 

переменными координатами {𝑥1 𝑥3} и с постоянными координатами 𝑦2 = {49.54, 𝑦4 = 2.2}, 

взятые из оптимальной точки 𝑌𝑜 на рис. 17.k1. 

Координаты точки и функция третьего критерия на максимум:  

𝑌3
∗ = {𝑦1 = 31.90, 𝑦2 = 59.00, 𝑦3 = 2.1, 𝑦4 = 7.0}, ℎ3

∗ =  ℎ3(𝑌3
∗)  = −210.35  

при расчете по четырем переменным. На рис. 17.k1 обозначена как 𝑓3
∆(𝑋3

∗)  = −210.35   

𝑌3
∗ = {𝑥1 = 31.9, 𝑥3 = 2.1} (на рис. 17.k1 обозначена как 𝑋3

∗).  

В двухмерной системе координат 𝑦1, 𝑦3 величина целевой функции равна ℎ3
∗=𝑓3(𝑋3

∗) =

195.73. (Черный цвет) Величина целевой функции 𝐹3
∗= 210.3.   

Координаты точки минимума 𝑋3
0  = {𝑥1 = 78.16, 𝑥3 = 8.0}  (на рис. 17.k1. Величина 

целевой функции 𝑓3
0=169.26).  

Координаты точки и функция третьего критерия при равнозначных критериях: 

Координаты точки 𝑋𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348}. Величина целевой функции: 

𝑓3(𝑋𝑜) = 194.27.  Относительная оценка с приоритетом первого критерия в точке оптимума 

𝑋𝑞=1  третьего критерия: λ3(𝑋𝑞=1) =
𝑓3(𝑋𝑞=1)−𝑓3

0

𝑓3
∗−𝑓3

0 = 0. 48683 .  В физических единицах 

величина третьего критерия с приоритетом в точке оптимума 𝑋𝑞=1 равна 

 𝑓3(𝑋3,𝑞=1) = 189.2. (Фиолетовый цвет). 

 

Линейная функция, соединяющая точки 𝑓3(𝑋𝑜)  и 𝑓3
∆ ( 𝑋3

∗ ) в физических единицах 

характеризует функцию 𝑓3(𝑋) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. А в целом 

отрезки 𝑓3
∆(𝑋1

∗)  - 𝑓3(𝑋𝑜) - 𝑓3
∆ ( 𝑋3

0 ) представляют геометрическую интерпретацию функции 

𝑓3(𝑋3,𝑞=1) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. 

4. Геометрическая интерпретация результатов решения ВЗМП – четвертой 

характеристики 𝑓4(𝑋4,𝑞=1) с приоритетом первого критерия структуры материала при 

проектировании в физических единицах. 

 

Рисунок 17 – k1. Функция 𝑓3(𝑋3,𝑞=1) с приоритетом первого критерия  

в двухмерной системе координат 𝑥1 𝑥3, геометрическая интерпретация функции 𝑓3(𝑋)  

в системе координат 𝑥1, … , 𝑥4. 
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На Рис. 18.k1 исследованы: точки оптимума 𝑋4
∗ , 𝑋𝑞=1 , с соответствующими 

относительными оценками λ4(𝑋4
∗) λ4(𝑋4,𝑞=1), а также линейные функции 𝜆𝑜λ4(𝑋4,𝑞=1) − 𝜆4

∆(𝑋4
∗) 

𝜆𝑜 в относительных единицах, которые характеризует функцию 𝑓4(𝑋4,𝑞=1) в четырехмерном 

измерении параметров 𝑥1, … , 𝑥4. 

Четвертая характеристика структуры материала ℎ4(𝑋) (173) сформирована в 3:   

𝑚𝑎𝑥 ℎ4(𝑌)21.004 − 0.0097𝑦1 − 0.841𝑦2 − 0.4326𝑦3 + 1.1723𝑦4 + 0166𝑦1𝑦2 +

0.085𝑦1𝑦3 − 0.0001𝑦1𝑦4 + 0.0523𝑦2𝑦3  + 0.0002𝑦2𝑦4 + 0.0006𝑦3𝑦4 − 0.0022𝑦1
2 +

0.0035𝑦2
2 + 0.006𝑦3

2 − 0.0311𝑦4
2}}. 

Представим геометрическую интерпретацию функцию 𝑓4(𝑋4,𝑞=1)  в физических 

единицах с переменными координатами { 𝑥1 𝑥3}  и с постоянными координатами 𝑦2 =

{49.54, 𝑦4 = 2.2}, взятые из оптимальной точки 𝑌𝑜  на рис. 18.k1. 

Координаты точки и функция четвертого критерия на максимум:  

𝑌4
∗ = {𝑦1 = 36.70, 𝑦2 = 59.00, 𝑦3 = 2.1, 𝑦4 = 2.2}, ℎ4

∗ = ℎ4(𝑌4
∗)  = 30.714 при расчете по 

четырем переменным. На рис. 20.k1 обозначена как 𝑓4
∆(𝑋4

∗)  = 30.714   

𝑋4
∗ = {𝑥1 = 36.70, 𝑥3 = 2.1} (на рис. 20.k1 обозначена как 𝑋4

∗). В двухмерной системе 

координат 𝑦1, 𝑦3  величина целевой функции равна ℎ4
∗ = 𝑓4(𝑋4

∗) = 28.302 . (Черный цвет) 

Величина целевой функции 𝐹4
∗= 30.714. 

Координаты точки и функция четвертого критерия минимума 𝑋4
0 = {𝑥1 = 62.71, 𝑥3 =

8}. Величина целевой функции 𝑓4
0 = 𝑓4

∆(𝑋4
∗)=−73.62.  

Координаты точки 𝑋𝑜 = {𝑥1 = 43.9, 𝑥3 = 4.348}  (на рис. 18.k1 обозначена как 𝑋𝑜 ). 

Величина целевой функции 𝑓4(𝑋𝑜) = 47.5.  

 

Относительная оценка с приоритетом первого критерия в точке оптимума 𝑋𝑞=1 

четвертого критерия: λ4(𝑋𝑞=1) =
𝑓4(𝑋𝑞=1)−𝑓4

0

𝑓4
∗−𝑓4

0 = 0. 38154.  В физических единицах величина 

 

Рисунок 18 – k1. Функция 𝑓4(𝑋4,𝑞=1) в двухмерной системе координат 𝑥1 𝑥3  

и геометрическая интерпретация функции 𝑓4(𝑋4,𝑞=1)с приоритетом первого критерия  

в системе координат 𝑥1, . . , 𝑥4. 
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четвертого критерия с приоритетом в точке оптимума 𝑋𝑞=1  равна 𝑓4(𝑋4,𝑞=1) = 57.254 . 

(Показана фиолетовым цветом). 

Линейная функция, соединяющая точки 𝑓4(𝑋𝑜)  и 𝑓4
∆ ( 𝑋4

∗ ), в физических единицах 

характеризует функцию 𝑓4(𝑋) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. А в целом 

отрезки 𝑓4
∆(𝑋4

∗)  - 𝑓4(𝑋𝑜) - 𝑓4
∆ ( 𝑋4

0 ) представляют геометрическую интерполяцию функции 

𝑓4(𝑋) в четырехмерном измерении параметров 𝑥1, … , 𝑥4. 

Заключение по разделу: приоритетный критерий k1.  

В разделе рассмотрена и решена проблема (фрагмент) разработки и принятия 

управленческого решения условиях неопределенности в сложной инженерной системы 

(структуры материала).  Проведен анализ результатов решения ВЗМП при заданном 

приоритете первого критерия, представлена геометрическая интерпретация результатов 

решения при проектировании в трехмерной системе координат четырех характеристик 

(критериев), во-первых, в относительных единицах, во-вторых, в физических единицах.  

5.2.4. Этап 11.k2. Исследование, выбор оптимальных параметров сложной 

инженерной системы (структура материала: функций: 𝒇𝟏(𝑿), … , 𝒇𝟒(𝑿) ) по второму 

приоритетному критерию, геометрическая интерпретация результатов решения 

ВЗМП. 

В разделе представлено решение векторной задачи математического программирования 

- модели сложной инженерной системы (структуры материала) при заданном приоритете 

второго критерия на базе многомерной математики. 

Этап 11.k2 выполнен точно по той же схеме, что и этап 11.k1 В работе представлен шаг 

2, 3, 4 и Геометрическая интерпретация результатов решения векторной задачи выбора 

оптимальных параметров по второму приоритетному критерию в относительных единицах. 

Шаг 2. Выбор приоритетного критерия 𝑞 ∈ 𝑲. 

Из пары λ𝑜 = λ2(𝑋𝑜) = λ3(𝑋𝑜) =0.6087 противоречивых критериев выбирается 

критерий, который ЛПР хотел бы улучшить. Такой критерий называется «приоритетным 

критерием», обозначим его 𝑞 = 2 ∈ 𝑲.  

Этот критерий исследуется во взаимодействии с первым критерием 𝑞 = 1 ∈ 𝑲.  

Выбор приоритетного критерия: на дисплей выдается общая информация для 

принятия решений: Критерии в точке оптимума 𝑋𝑜: 

 FXo ={363.9686  1790.6811  194.2795  47.504}.                    (178)  

Относительные оценки в 𝑋𝑜: 

 LXo ={0.73718     0.60874     0.60874     0.60874}.              (179) 

Мы исследуем эти два критерия из всего множества критериев 𝑲 = 4, показанных на 

рис. 6k2. Выдается сообщение на дисплей:  

q=input('Введите приоритетный критерий (номер) q= ') – Ввели критерий q=2.  

Шаг 3. Формируются числовые пределы изменения величины приоритета критерия 𝑞 =

2Î𝑲:  

𝑓𝑞(𝑋𝑜) =  1790.68 𝑓𝑞(𝑋) 1361.4174 =  𝑓𝑞(𝑋𝑞
∗), 𝑞 ∈ 𝑲.               (180) 

Аналогично, в относительных единицах критерий q=2 изменяется в следующих 

пределах: 𝑞(𝑋𝑜) = 0.6087  𝑞(𝑋) 1 = 𝑞(𝑋𝑞
∗), 𝑞 = 2 ∈ 𝑲.   

Эти данные анализируется.   

Шаг 4. Определяется величина приоритетного критерия qÎK. (Decision-making). 
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На сообщение: «Введите величину приоритетного критерия fq=» - вводим, например, 

fq=1500. 

Геометрическая интерпретация результатов решения векторной задачи выбора 

оптимальных параметров по второму приоритетному критерию в относительных 

единицах. 

Аналогично рис. 14.k1, сформируем относительные оценки четырех критериев в точке 

оптимума 𝑌𝑘
∗   λ𝑘(𝑌𝑘

∗), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  (черный цвет) и 𝜆𝑘
∆(𝑋𝑘

∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  (красный цвет) и 

представим их рис. 14.k2. 

 

Аналогично рис. 15.k1,… , 18.k1 формируется геометрическая интерпретация 

результатов решения ВЗМП с приоритетом второго критерия – модели структуры материала 

при проектировании в трехмерной системе координат в физических единицах.  рис. 15.k2,… , 

18.k2. 

5.2.5. 11.k3 этап. Исследование, выбор оптимальных параметров сложной 

инженерной системы (структура материала - функций: 𝒇𝟏(𝑿), … , 𝒇𝟒(𝑿)) с приоритетом 

третьего критерия, геометрическая интерпретация результатов решения ВЗМП. 

В разделе представлено решение векторной задачи математического программирования 

- модели сложной инженерной системы (структуры материала) при заданном приоритете 

третьего критерия на базе многомерной математики. 

Этап 11.k3 выполнен точно по той же схеме, что и этап 11.k1 В работе будет 

представлен шаг 2, 3, 4 и Геометрическая интерпретация результатов решения векторной 

задачи выбора оптимальных параметров по третьему приоритетному критерию в 

относительных единицах. 

Шаг 2. Выбор приоритетного критерия 𝑞 ∈ 𝑲. 

Из пары λ𝑜 = λ2(𝑋𝑜) = λ3(𝑋𝑜) = 0.6087 противоречивых критериев выбирается 

критерий, который ЛПР хотел бы улучшить. Такой критерий называется «приоритетным 

критерием», обозначим его 𝑞 = 3 ∈ 𝑲 . Этот критерий исследуется во взаимодействии с 

первым критерием 𝑞 = 1. 

 

Рисунок 14 – k2. -задача в системе координат 𝑥1 𝑥3 . Результаты решения: 

 𝜆𝑘
∆(𝑋𝑘

∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; относительные оценки четырех критериев с приоритетом  

второго критерия в точке оптимума 𝑋𝑞=2: λ𝑘(𝑋𝑞=2), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 
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Выбор приоритетного критерия. На дисплей выдается общая информация для 

принятия решений. Критерии в точке оптимума 𝑋𝑜: 

 FXo ={363.968 1790.681 194.2795 47.5045}.                   (181) 

Относительные оценки в 𝑋𝑜:  

LXo ={0.73718     0.60874     0.60874     0.60874}.              (182) 

Мы исследуем эти два критерия из всего множества критериев 𝑲 = 4, показанных на 

рис. 14.k3. Выдается сообщение на дисплей:  

q=input('Введите приоритетный критерий (номер) q= ') – Ввели критерий q=3.  

 

Шаг 3. Определяются числовые пределы изменения величины приоритета критерия 𝑞 =

3Î𝑲. Для приоритетного критерия 𝑞 = 3Î𝑲 определяются изменения числовых пределов в 

натуральных единицах при переходе из точки оптимума 𝑋𝑜  в точку 𝑋𝑞
∗ *

k , полученную на 

первом шаге. Данные о критерии q=3 выдаются на экран: 

𝑓𝑞(𝑋𝑜) =  194.2 𝑓𝑞(𝑋)210.35 = 𝑓𝑞(𝑋𝑞
∗), 𝑞 ∈ 𝑲.           (183) 

В относительных единицах критерий q=3 изменяется в следующих пределах: 𝑞(𝑋𝑜) =

0.6087  𝑞(𝑋)1 

=  𝑞(𝑋𝑞
∗), 𝑞 = 3 ∈ 𝑲.                            (184) 

Эти данные анализируется.   

Шаг 4. Выбор величины приоритетного критерия qÎK. (Decision-making). На сообщение: 

«Введите величину приоритетного критерия fq=» - вводим, например, fq=200. 

Геометрическая интерпретация результатов решения векторной задачи выбора 

оптимальных параметров по третьему приоритетному критерию в относительных 

единицах. 

Аналогично рис. 14.k1, сформируем относительные оценки четырех критериев в точке 

оптимума 𝑌𝑘
∗   λ𝑘(𝑌𝑘

∗), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  (черный цвет) и 𝜆𝑘
∆(𝑋𝑘

∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  (красный цвет) и 

представим их рис. 14.k3. Аналогично рис. 15.k1,… , 18.k1 формируется геометрическая 

 

Рисунок 14 – k3. -задача в системе координат 𝑥1 𝑥3 . Результаты решения: 

 𝜆𝑘
∆(𝑋𝑘

∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; относительные оценки четырех критериев с приоритетом  

третьего критерия в точке оптимума 𝑋𝑞=3: λ𝑘(𝑋𝑞=3), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 
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интерпретация результатов решения ВЗМП с приоритетом третьего критерия – модели 

структуры материала при проектировании в трехмерной системе координат в физических 

единицах рис. 15.k3,… , 18.k3. 

5.2.6. 11.k4 этап. Исследование, выбор оптимальных параметров сложной 

инженерной системы (структура материала - функций: 𝒇𝟏(𝑿), … , 𝒇𝟒(𝑿)) по четвертому 

приоритетному критерию, геометрическая интерпретация результатов решения 

ВЗМП. 

В разделе представлено решение векторной задачи математического программирования 

- модели сложной инженерной системы (структуры материала) при заданном приоритете 

четвертого критерия на базе многомерной математики. 

Этап 11.k4 выполнен точно по той же схеме, что и этап 11.k1 В работе будет 

представлен шаг 2, 3, 4 и геометрическая интерпретация результатов решения векторной 

задачи выбора оптимальных параметров по четвертому приоритетному критерию в 

относительных единицах. 

Шаг 2. Выбор приоритетного критерия 𝑞 ∈ 𝑲 . Из пары λ𝑜 = λ2(𝑋𝑜) =

λ3(𝑋𝑜)=λ4(𝑋𝑜)=0.6087 противоречивых критериев выбирается критерий, который ЛПР хотел 

бы улучшить. Такой критерий называется «приоритетным критерием», обозначим его 𝑞 = 4 ∈

𝑲. Этот критерий исследуется во взаимодействии с первым критерием 𝑞 = 1. 

Выбор приоритетного критерия. На дисплей выдается общая информация для 

принятия решений. Критерии в точке оптимума 𝑋𝑜:             

  FXo ={363.968 1790.681 194.2795 47.5045}.                       (185) 

Относительные оценки в 𝑋𝑜: 

 LXo ={0.73718     0.60874     0.60874     0.60874}.             (186) 

 

Мы исследуем эти два критерия из всего множества критериев 𝑲 = 4, показанных на 

рис. 12.k4. Выдается сообщение на дисплей:  

 

Рис. 16.k4. -задача в системе координат 𝑥1 𝑥3 . Результаты решения: 

 𝜆𝑘
∆(𝑋𝑘

∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅; относительные оценки четырех критериев с приоритетом  

четвертого критерия в точке оптимума 𝑋𝑞=4: λ𝑘(𝑋𝑞=4), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅. 
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q=input('Введите приоритетный критерий (номер) q= ') – Ввели критерий q=4. 

Геометрическая интерпретация результатов решения векторной задачи - функции 

𝑓1(𝑋), … , 𝑓4(𝑋) выбора оптимальных параметров по четвертому приоритетному критерию 

в относительных единицах. 

Аналогично рис. 12.k1, сформируем относительные оценки четырех критериев в точке 

оптимума 𝑌𝑘
∗   λ𝑘(𝑌𝑘

∗), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  (черный цвет) и 𝜆𝑘
∆(𝑋𝑘

∗) = 1, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅  (красный цвет) и 

представим их рис. 12.k4. Аналогично рис. 13.k1,… , 16.k1 формируется геометрическая 

интерпретация результатов решения ВЗМП с приоритетом четвертого критерия – модели 

структуры материала при проектировании в трехмерной системе координат в физических 

единицах.  рис. 13.k4,… , 16.k4. 

6. Сравнение прикладных методов многомерной математики с методами 

искусственного интеллекта. 

 Оценим прикладные методы многомерной математики - {аксиоматика Машунин Ю.К., 

принципы оптимальности и методы решения векторных задач математического (выпуклого) 

программирования, представленные в третьем и четвертом разделе данной работы, и сравним 

их с методами искусственного интеллекта. Используя теорию векторной оптимизации, мы 

получили для инженерной системы (в частности, технологического процесса, структуры 

материала): 

 точки оптимума при равнозначных критериях - 𝑋𝑜 = (𝑥𝑗
𝑜 , 𝑗 = 1, 𝑁̅̅ ̅̅ ̅}; 

 характеристики (критерии) при равнозначных критериях: 𝐹(𝑋𝑜) = {𝑓𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅}; 

 относительные оценки при равнозначных критериях –  (𝑋𝑜) = {𝑘(𝑋𝑜), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} , 

которые лежат в пределах {0  𝑘(𝑋𝑜)  1 (100%), 𝑘 = 1, 𝐾̅̅ ̅̅ ̅} , и легко переводится в 

натуральные (физические) данные. 

Может ли эти результаты получить искусственный интеллект, функционирующий, как 

правило, по принципу перебора. Ответим: «Нет». Искусственный интеллект может получить 

только приблизительный результат, который задал человек, но чем этот результат лучше 

других результатов также должен оценить человек на основе интуиции.   

Таким образом, разработанная теория векторной оптимизации может являться 

математическим аппаратом вычислительного интеллекта искусственного интеллекта. 

7. Заключение 

Проблема разработки математических методов многомерной математики в приложении 

к векторной задаче оптимизации и принятия оптимального решения на их основе в сложной 

технической системе по некоторому набору функциональных характеристик и 

экспериментальных данных является одной из важнейших задач системного анализа и 

проектирования инженерно-технических систем.   

В работе разработана теория и конструктивные методы решения векторных 

(многокритериальных) задач математического программирования, во-первых, при 

равнозначных критериях (характеристик инженерных систем), во-вторых, при заданной 

числовой величине приоритетного (представляющего интерес для разработчика) критерия.   

В работе на базе векторной оптимизации разработана методология выбора оптимальных 

параметров при проектировании инженерных систем: построена математическая модель 

инженерной системы в условиях определенности и неопределенности; разработаны 

конструктивные методы решения векторной задачи; разработаны и построены численные 

модели много параметрических, много функциональных инженерных систем; представлена 
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численная реализация модели технологического процесса при равнозначных критериях и с 

заданным приоритетом критерия; представлена численная реализация модели структуры 

материала при равнозначных критериях и с заданным приоритетом любого критерия; 

представлена геометрическая интерпретация результатов решения при моделировании в 

трехмерной системе координат четырех характеристик (критериев) в относительных и 

физических единицах в технологическом процессе и материаловедении.  
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