ИСПОЛЬЗОВАНИЕ ПРОГРАММНЫХ КОМПЛЕКСОВ ДЛЯ РАСЧЕТА ВЕТРОВЫХ НАГРУЗОК

Аннотация: в статье рассматриваются программные комплексы для расчёта ветровых воздействий, перспективы внедрения автоматизации ветровых расчетов на здания сложной формы.

Ключевые слова: ветровая нагрузка, ветровое воздействие, программные комплексы.

Стремление к уходу от прямоугольных форм зданий в плане к нестандартным геометрическим архитектурным решениям, развитие высотного строительства подчеркивают актуальность изучения вопроса по распределению ветровых нагрузок на здания сложной формы. При грамотном проектировании надо правильно задавать и учитывать возможные варианты нагружений, воздействий, это позволит повысить надежность принятых проектных решений. СП по Нагрузкам и воздействиям содержит методику по расчету ветровых нагрузок на здания, но для определенного ограниченного набора форм, она состоит в расчете ветра из суммы средней и пульсационной составляющих. В нормативной литературе не содержатся данные по распределению ветровой нагрузки на здания сложной формы, но для того чтобы в полной мере понимать методику расчета таких сооружений, надо проводить исследования по данной теме. Автоматизация современного строительного проектирования сталкивается с проблемой, связанной с ограниченностью типов форм, указанных в нормативной литературе, используемых для расчета аэродинамических коэффициентов. Исследования по результатам сходимости расчета простых форм в пакетах по инженерному анализу не могут в полной мере отразить все многообразие расчетных случаев.

В данной статье рассматриваются современные программные комплексы, которые позволяют осуществлять расчёт ветровой нагрузки на здания и сооружения.

1. ΠΚ «Ansys Fluent»

Модуль ANSYS CFX предоставляет широкие возможности для моделирования различных типов потоков, включая ламинарные и турбулентные, сжимаемые и несжимаемые жидкости. Позволяет ещё достичь решение задач теплообмена, процессов кипения, многофазных потоков, горения, конденсации, фильтрации, химических реакций и многих других. Одна из главных особенностей модуля ANSYS CFX – это поддержка более двадцати различных моделей турбулентности. Это означает, что пользователь может выбрать наиболее подходящую модель для своей конкретной задачи и получить более точные результаты. Однако, для полноценного использования возможностей ANSYS CFX часто требуется работать с несколькими продуктами Ansys одновременно. Например, чтобы исправить или отредактировать геометрию расчетной модели используется Ansys Geometry, для создания конечно-элементной сетки/объемов - Ansys Mesh. Для расчета аэродинамики здания, а также анализа полученных результатов используется модуль Flow (Fluent). Все эти продукты интегрированы в среде Ansys Workbench, что обеспечивает удобство работы и обмена данными между ними. ANSYS CFX – хороший комплекс для моделирования, анализа различных физических процессов, которые связаны с потоками жидкостей, программа обладает широким спектром возможностей, а также поддерживает различные модели турбулентности, что позволяет получать более точные результаты. Благодаря интеграции с другими продуктами Ansys, такими как Geometry, Mesh и Flow, пользователь имеет возможность эффективно работать с расчетными моделями, после анализировать полученные данные.

2. Scad Office

Использование программного комплекса SCAD при расчете ветровых нагрузок имеет ряд преимуществ. Например, так одним из них является возможность сделать достаточно

точный расчёт самых опасных сечений в здании. Использование данных с такими полными и детальными расчетами поможет эффективно использовать и распределять материал в конструкциях, а также позволит находить грамотное конструктивное решение по усилению тех зон, которые будут в наибольшей степени подвержены ветровому воздействию.

3. Помимо вышеназванных, также существует популярный расчетный комплекс в Российской Федерации — это ПК ЛИРА-САПР. Считается одним из самых предпочтительных комплексов инженерами-строителями нашей страны. Это объясняется тем, что у программы есть удобные инструменты для работы с широкими возможностями. Также, ЛИРА-САПР обеспечивает высокую скорость работы с расчетной схемой, которую показывают не все расчетные комплексы.

Подводя заключение статье, можно сказать, что путем грамотного моделирования аэродинамики ветра, основанного на математических уравнениях движения жидкости и газа в трех измерениях, а также учета турбулентности потока, можно достигнуть достаточно точных результатов при расчетах на компьютере с использованием программных комплексов, которые будут эквивалентны испытаниям моделей здания в аэродинамической трубе. Современная тенденция к развитию технологий в области автоматизированных расчетов позволяет определять необходимые параметры для зданий и сооружений сложной формы, уникальных объектов, что позволяет сократить количество испытаний макетов в аэродинамических трубах, а также снизить затраты организаций, которые заинтересованы в научно-техническом сопровождении нетиповых объектов, сложных, имеющих сложную геометрию. Несмотря на тот факт, что эксперименты и исследования в аэродинамических трубах все также проводят и актуальны, дополнительные вычислительные расчеты, необходимые для подтверждения результатов, обходятся значительно дешевле и могут помочь предоставить более подробную информацию об объектах. В будущем исследования в смогут помочь минимизировать число чрезвычайных произошедших в следствие неверных расчетов, в частности ветровых нагрузок, которые приводили к разрушению сооружений, домов, зданий, позволят привлечь заинтересованных студентов и преподавателей изучать автоматизацию ветровых расчетов, совершенствовать методику расчета ветра на объекты со сложной геометрией, что позволит не только двигать сферу проектирования вперед, но и добиться экономического эффекта по снижению используемого материала в конструкциях из-за точных данных расчетов.

Список литературы:

- 1. СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* М.: Минстрой России, 2016.
- 2. Дубовцев, П. В. Оценка возможности использования нормативной документации для определения ветрового давления на поверхность высотного здания путем численного моделирования / П. В. Дубовцев, П. А. Хазов, Д. В. Монич // Приволжский научный журнал. -2021. № 2(58).
- 3. Труфанова, Е.В. Анализ ветровых воздействий на здания сложной формы / Е.В. Труфанова, А.С. Осадчий // Молодой исследователь Дона. 2018.