Ставский Евгений Александрович, д.м.н., доцент, НГМУ, Новосибирск Stavsky Evgeniy Aleksandrovich, MD, DSc,

Associate Professor, NSMU, Novosibirsk Теплякова Тамара Владимировна,

д.б.н., профессор, ГНЦ ВБ «Вектор» НСО, п. Кольцово

Андреева Ирина Сергеевна, к.б.н., ведущий научный сотрудник, ГНЦ ВБ «Вектор» НСО, п. Кольцово

Ермаченко Максим Александрович, преподаватель, НГМУ, Новосибирск

Ставская Анастасия Александровна, студентка, НГМУ, Новосибирск

ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА БИОЛОГИЧЕСКИХ СВОЙСТВ МЕЛАНИНОВ ИЗ ГРИБА ЧАГИ EXPERIMENTAL ASSESSMENT OF BIOLOGICAL PROPERTIES OF MELANINS FROM CHAGA MUSHROOM

Аннотация: В статье рассматриваются биологические свойства меланинов из природного сырья и глубинной культуры чаги *Inonotus obliquus* in vitro. В опытах in vitro показана антибактериальная и антигрибковая активности указанных меланинов в отношении ряда штаммов микроорганизмов, являющихся наряду с другими микробами, наиболее частой причиной развития местной раневой инфекции.

Abstract: The article discusses the biological properties of melanins from natural raw materials and deep culture of chaga *Inonotus obliquus* in vitro. In vitro experiments have shown the antibacterial and antifungal activity of these melanins against a number of strains of microorganisms, which, along with other microbes, are the most common cause of the development of local wound infection.

Ключевые слова: гриб чага, культура, тест-штаммы, культивирование.

Keywords: chaga mushroom, culture, test strains, cultivation.

Исследованиями показано, что высшие базидиомицеты, способны синтезировать широкий комплекс биологически активных веществ, являющихся нетоксичными для человека и обладающих антибактериальными, противовирусными, иммуномодулирующими [1-5] и другими полезными свойствами [6-9]. Представлялось актуальным оценить, в частности, перспективность использования и практическую значимость таких биологически активных веществ указанных грибов как меланины [4-5].

С целью оценки биологических свойств меланинов чаги определяли их антибактериальную и антигрибковую активности при совместном культивировании в жидкой среде исследуемых образцов с культурами тест-штаммов грамотрицательных и грамположительных бактерий и дрожжевых грибов, являющихся наряду с другими микробами наиболее частой причиной развития раневой инфекции. Указанные штаммы микроорганизмов депонированы в музейной коллекции ФБУН ГНЦ ВБ Вектор Роспотребнадзора и относятся к 3-4 группе патогенности для человека [10]. Исследуемые образцы чаги по 0,5 мл вносили в пробирки с 4,5 мл среды LB (Difco, USA) и добавляли 0,1

мл суточной культуры тест-штамма микроорганизма, суспендированной в физиологическом растворе до оптической плотности $10^{5.6}$ кл/мл. Далее пробирки с культурами и образцами выдерживали в аэрируемых условиях на термостатируемой качалке при температуре 37° С, в течение 18-24 часов. Полученные культуральные жидкости (КЖ) и их десятикратные разведения (до 10^{-7}) высевали в 3-x повторах на агаризованную среду LB. Инкубировали посевы в термостате при температуре 37° С в течение 18-24 часов, после чего подсчитывали количество выросших колоний для определения КОЕ/мл в неразведенной («исходной») суспензии. В качестве контроля определяли титр клеток в суспензии тест-штаммов, инкубированных в аналогичных условиях, без добавления исследуемых образцов. Полученные экспериментальные данные представлены в таблице.

Таблица Антибиотическая активность меланинов, выделенных из природного сырья и глубинной культуры чаги *Inonotus obliquus*

Тест-штаммы микроорганизмов	Меланин из природного сырья чаги	Меланин из глубинной культуры чаги F-1244	Хлорамфеникол	Контроль культуры тест-штамма
1	2	3	4	5
Бактерии				
Salmonella typhimurium 2606	$(1,6\pm0,3)10^9$	$(1,3\pm0,3)10^9$	Нет роста	$(1,8\pm0,5)10^9$
Staphylococcus aureus ATCC 6538	$(1,3\pm0,4)10^5$	$(5,9\pm1,8)10^6$	Нет роста	$(4,0\pm1,2)10^6$
Pseudomonas aeruginosa	$(2,2\pm0,7)10^9$	$(1,6\pm0,5)10^9$	$(1,9\pm0,6)10^9$	$(2,9\pm0,8)10^9$
Bacillus cereus	Нет роста	Нет роста	Нет роста	$4,0\times10^{5}$
Proteus mirabilis 160205	$(3,0\pm0,8)10^9$	$(2,9\pm0,8)10^9$	Нет роста	$(3,1\pm0,9)10^9$
Klebsiella pneumonia 378	$(2,1\pm0,7)10^9$	$(1,5\pm0,4)10^9$	Нет роста	$(1,4\pm0,5)10^9$
Дрожжи				
Candida albicans 620	$(1,8\pm0,5)10^7$	$(2,8\pm0,8)10^5$	$(2,2\pm0,5)10^7$	$(3,0\pm0,9)10^7$
Candida sp. Ft-5 (клинический образец)	$(2,4\pm0,7)10^7$	Нет роста	$(1,0\pm0,8)10^7$	$(1,6\pm0,5)10^7$

Примечание: в столбцах таблицы №№ 2-4 жирным шрифтом выделены показатели подавления с достоверностью 95% меланинами чаги роста культур тест-штаммов микроорганизмов в сравнении с их значениями для контрольных культур.

Из представленных в таблице данных следует, что меланины из природного сырья чаги и её глубинной культуры штамма *Inonotus obliquus* F-1244 проявили высокую антибиотическую активность в отношении штамма грамположительной спорообразующей бактерии *Bacillus cereus*, полностью подавив ее размножение в совместной культуре. Меланин из природного сырья чаги в среднем на порядок с достоверностью 95% подавлял рост золотистого стафилококка, штамма *Staphylococcus aureus* ATCC 6538. Меланин из глубинной культуры штамма чаги *Inonotus obliquus* F-1244 проявил антагонистическую активность в отношении штаммов дрожжей, как коллекционного штамма *Candida albicans* 620, так и клинического изолята штамма *Candida sp*. Ft-5 выделенного от умершего больного с генерализованной кандидозной инфекцией. В частности, в первом случае

указанный меланин снизил численность жизнеспособных клеток штамма *Candida* albicans 620 по сравнению с контрольной суспензией в среднем на два порядка с достоверностью 95%, во втором случае в условиях проведенного опыта полностью подавил рост высокопатогенного штамма *Candida sp.* Ft-5. Однако образцы меланинов, выделенных как из природного сырья, так и из глубинной культуры чаги *Inonotus obliquus* ожидаемо уступали по своему антибиотическому действию на исследованные культуры тест-штаммов воздействию антибиотика хлорамфеникола, поскольку он обладает выраженным бактериостатическим действием в отношении не менее 16 видов грамположительных и грамотрицательных бактерий [11]. В дополнительных исследованиях было установлено, что водный экстракт из природного сырья чаги также полностью подавлял рост *Bacillus cereus*, штамма *Candida sp.* Ft-5 и снизил численность жизнеспособных клеток штамма *Candida albicans* 620 по сравнению с контрольной суспензией в среднем на один порядок с достоверностью 95%.

Таким образом, меланины из природного сырья чаги *Inonotus obliquus* и глубинной культуры чаги штамма *Inonotus obliquus* F-1244 обладают выраженной антибиотической активностью разной степени в совместной культуре in vitro как в отношении бактерий *Bacillus cereus*, *Staphylococcus aureus* ATCC 6538, так и дрожжей *Candida albicans* 620 и клинического изолята высокопатогенного штамма *Candida sp*. Ft-5.

Список литературы:

- 1. Теплякова Т.В., Косогова Т.А. Высшие грибы Западной Сибири перспективные объекты для биотехнологии лекарственных препаратов. Новосибирск, 2014. 298 с.
- 2. Сакович В.В. Базидиомицеты как источники биологически активных веществ/В.В. Сакович, Д.Д. Жерносеков//Вестник Полесского государственного университета.-2018.-№1.- с.3-13.
- 3. Brugnari T. Effects of cooking and In Vitro digestion on antioxidant properties and cytotoxicity of the culinary-medicinal mushroom Pleurotus ostreaus (agaricomycetes)/T. Brugnari [et al.] // International Journal of Medicinal Mushrooms. 2018. Vol. 20, N 3. Pp. 259 270.
- 4. Саерова К.В., Мухтарова А.Р. Извлечение биологически активных компонентов из водного экстракта чаги/Саерова К.В., Мухтарова А.Р.//Молодежь и наука: шаг к успеху.-2018.-c.254-257.
- 5. Teplyakova T.V., Ilyicheva T.N., Andreeva I., Solovyanova N. The activity of components of true tinder mushroom, chaga Inonotus obliquus (Fr.) Pil. against viruses, bacteria and fungi // Abstract of the 10th International Medicinal Mushroom Conference (September 19–22, 2019, Nantong, China). P. 11.
- 6. Бабицкая В.Г., Щерба В.В., Иконникова Н.В. Меланиновый комплекс гриба *Inonotus obliquus* // Прикладная биохимия и микробиология. -2000. Т. 36, № 4. С. 439-444.
- 7. Сушинская Н.В., Курченко В.П., Горовой Л.Ф., Сенюк О.Ф. Получение и использование в медицине меланинов из трутовых грибов // Успехи медицинской микологии. -2005.- Т. 6.- С. 255-259.
- 8. Ильичева Т.Н., Ананько Г.Г., Косогова Т.А., Олькин С.Е., Омигов В.В., Таранов О.С., Теплякова Т.В. Противовирусная активность меланина из чаги (*Inonotus obliquus*), полученного на основе культивирования штамма F-1244, выделенного в чистую культуру // Химия растительного сырья. 2020. № 2. С. 283-289.
- 9. Teplyakova T.V., Ilyicheva T.N., Kosogova T.A. Higher Fungi Against Influenza Viruses. International Journal of Medicinal Mushrooms-2021.-23 (2).-P.1-11
- 10. Безопасность работы с микроорганизмами І-ІІ групп патогенности (опасности): Санитарные правила. СП 1.3.3118-13. Москва: Министерство здравоохранения Российской Федерации, 2013, 145 с.
- 11. Справочник Видаль. Лекарственные препараты в России: Справочник. М.: Видаль Рус, 2019, 1200 с.

